Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Optimization on injection process parameters based on an improved BP-NSGA Ⅱ algorithm
Authors: Cao Zhiyong Xing Junlong Xia Juchen Wang Xinyun 
Unit: Huazhong University of Science and Technology  Hubei University 
KeyWords: injection process Pareto optimal solution orthogonal experiment  BP neural network NSGAⅡ algorithm 
ClassificationCode:TG309
year,vol(issue):pagenumber:2016,41(11):135-142
Abstract:

The goal of the optimization on injection molding process is to ensure both the quality and efficiency under remaining equipment and materials to achieve the ideal forming process. Firstly, the objective function with quality and efficiency was confirmed, then the integrated optimization model was constructed with multi-objective decision variables of mold temperature, melt temperature, packing pressure, dwell time and cooling time. Furthermore, the sample data of model were trained by the powerful non-linear interpolation and self-learning ability of BP network. In the end, the optimal injection designing process was obtained by combining the global and multi-objection optimization ability of the improved Non-dominated Sorting Genetic AlgorithmsⅡ.

Funds:
国家自然科学基金青年项目(51205144)
AuthorIntro:
曹志勇(1972-),男,博士研究生 王新云(1973-),男,博士,教授
Reference:


[1]Altan M.Reducing shrinkage in injection moldings via the Taguchi,ANOVA and neural network methods[J].Materials and Design,2010,3l:599-604.
[2]Ozcelik B, Ozbay A, Demirbas E. Influence of injection parameters and mold materials on mechanical properties of ABS in Plastic injection molding[J].Intemational Communications in Heat and Mass Transfer,2010;
37:1359-1365.
[3]周浩文. 基于人工神经网络的注塑成形模拟及工艺参数优化的研究[D]. 广州: 广东工业大学, 2013.Zhou H W. Optimization of the Injection Molding Simulation and Process Parameters based on Artificial Neural Network[D]. Guangzhou:Guangdong University of Technology, 2013.
[4]时慧焯. 基于人工神经网络的注塑成形翘曲优化方法[D]. 大连:大连理工大学, 2012.Shi H Z. Warpage Optimization Methods Based on Artificial Neural Network in Injection Molding[D]. Dalian:Dalian University of Technology,2012.
[5]时慧焯, 王希诚. 基于改进的BP神经网络的注塑成形翘曲优化设计[J]. 化工学报, 2011, 62(9): 2562-2568.Shi H Z, Wang X C. Warpage optimization of injection molding based on improved BP neural network[J]. Journal of Chemical Industry and Engineering, 2011, 62(9): 2562-2568.
[6]Yin F, Mao H, Hua L, et al. Back Propagation neural network modeling for warpage prediction and optimization of plastic products during injection molding[J]. Materials & Design, 2011, 32(4): 1844-1850.
[7]王义. 基于遗传算法的可视电话外壳注塑模优化设计[D]. 昆明:昆明理工大学, 2010.Wang Y. Optimization Design of Videophone Injection Mold Based on Genetic Algorithm[D]. Kunming:Kunming University of Science and Technology,2010.
[8]姚文龙, 胡泽豪, 刘荣亮. 基于响应面模型和遗传算法的注塑工艺多目标优化[J]. 中国塑料, 2014, (9): 76-80.Yao W L, Hu Z H, Liu R L. Multi-objective optimization of injection process based on RAM/GA method[J]. China Plastics, 2014, (9): 76-80.
[9]Shen C, Wang L, Li Q. Optimization of injection molding process parameters using combination of artificial neural network and genetic algorithm method[J]. Journal of Materials Processing Technology, 2007, 183(2): 412-418.
[10]尹飞. 基于神经网络技术和遗传算法的注塑成形工艺优化方法研究[D]. 武汉:武汉理工大学, 2012.Yin F. Research on Process Optimization Method for Plastic Injection Molding based on Artificial Neural Network and Genetic Algorithm[D]. Wuhan: Wuhan University of Technology,2012.
[11]申长雨, 王利霞, 张勤星. 神经网络与混合遗传算法结合的注塑成形工艺优化[J]. 高分子材料科学与工程, 2005, 21(5): 23-27. Shen C Y, Wang L X, Zhang Q X. Process optimization of injection molding by the combining ANN/HGA method[J]. Polymeric Materials Science and Engineering, 2005, 21(5): 23-27.
[12]王晓鹏. 多目标优化设计中的Pareto遗传算法[J]. 系统工程与电子技术, 2003, 25(12): 1558-1561.Wang X P. Pareto genetic algorithm for mufti-objective optimization design[J]. Systems Engineering and Electronics, 2003, 25(12): 1558-1561.
[13]Srinvas N, Deb K. Multi-objective function optimization using non-dominated sorting genetic algorithms[J]. Evolutionary Computation, 1994, 2(3): 221-248.
[14]Deb K, Agrawal S, Pratap A, et al. A fast elitist non-dominated sorting genetic algorithm for multi-objective optimization: NSGA-II[A]. International Conference on Parallel Problem Solving From Nature[C]. Springer Berlin Heidelberg, 2000.
[15]王鸿斌, 张立毅, 胡志军. 人工神经网络理论及其应用[J]. 山西电子技术, 2006,(2): 41-43.Wang H B, Zhang L Y, Hu Z J. Theory on artificial neural network and its application[J]. Shanxi Electronic Technology, 2006, (2): 41-43.
[16]关志华. 非支配排序遗传算法 (NSGA) 算子分析[J]. 管理工程学报, 2004, 18(1): 56-60.Guan Z H. Opertors analysing of the nondominated sorting genetic algorithm (NSGA)[J]. Journal of Industrial Engineering and Engineering Management, 2004, 18(1): 56-60.
[17]文诗华. 多目标进化算法中变异算子的研究[D]. 湘潭:湘潭大学, 2009.Wen S H. The Research on Mutation Operators for Multi-Objective Evolutionary Algorithms[D]. Xiangtan:Xiangtan University,2009.
[18]孙军. 基于Moldflow 与正交试验的尾罩注塑工艺与模具设计[J]. 塑料工业, 2012, 40(4): 67-70.Sun J. Injection process and mold design for tail cover based on moldflow and orthogonal experiment[J]. China Plastics Industry, 2012, 40(4): 67-70.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com