Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Numerical simulation and experimental research on direct extrusion for dual-phase magnesium lithium alloy
Authors: Jiang Bingchun  Wang Shuping  Liu Fangfang  Tan Lianyao  Li Zhenzhen 
Unit: Guangdong University of Science and Technology 
KeyWords: magnesium lithium alloy direct extrusion extrusion ratio grain refinement Deform-3D 
ClassificationCode:TG376
year,vol(issue):pagenumber:2017,42(1):116-120
Abstract:

For magnesium lithium alloy LZ92, the deformation mode of direct extrusion was numerically simulated by Deform-3D finite element software, and the influences of different extrusion ratios of 10, 20 and 30 on equivalent stress and equivalent strain were analyzed. According to the simulation analysis result of direct extrusion, the hot extrusion test was carried out to observe the microstructure and mechanical properties of the deformed samples. The results show that with the increase of extrusion ratio, the equivalent strain increases, and the sample homogeneity is enhanced. Therefore,the equivalent strain is in linear growth with a growth rate of 0.5, and the maximum equivalent strain is up to 3. At the same time, the more sufficient the recrystallization of magnesium lithium alloy LZ92 is, the more obvious  the grain refinement is, and the grain size is refined from 45 μm to 15 μm. LZ92 deformation magnesium lithium alloy has excellent mechanical properties. With the increase of extrusion ratio, the yield strength, tensile strength and deformation significantly increase. The tensile strength gradually increases to 203.1 MPa which is 76% more than the cast state, and the yield strength grows linearly at a speed of 40 MPa.

Funds:
广东省青年创新人才类项目(2015KQNCX192);广东科技学院重点项目(GKY-2015KYZD-3);广东科技学院一般项目(GKY-2015KYYB-9)
AuthorIntro:
姜炳春(1987-),男,硕士 E-mail:jiangbingchun_2008@163.com
Reference:
[1]Zhang H H, Huang G S, Li J H, et al. Influence of warm pre-stretching on microstructure and properties of AZ31 magnesium alloy [J]. Journal of Alloys and Compounds, 2013, 563(9): 150-154.

[2]Xiu L H, Yan L, Peng L, et al. Hot deformation behavior and microstructure evolution of a Mg-Gd-Nd-Y-Zn alloy[J]. Rare Metals, 2016, 357: 532-536.

[3]Hu G S, Zhang D F, Zhao D Z, et al. Microstructures and mechanical properties of extruded and aged Mg-Zn-Mn-Sn-Y alloys [J]. Transactions of Nonferrous Metals Society of China, 2014, 24(10): 3070-3075.

[4]陈斌, 冯林平, 钟皓, . 变形Mg-Li-Al-Zn合金的组织与性能[J]. 北京航空航天大学学报, 2004, 30(10): 976-979.

Chen B, Feng L P, Zhong H, et al. Microstructures and properties of a Mg-Li-Al-Zn wrought alloy[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(10): 976-979.

[5]王涛, 张密林, 牛中毅, . Mg-Li-Al-Zn-RE合金铸态和退火态的组织与性能[J]. 金属热处理, 2008, 33(2): 5-8.

Wang T, Zhang M L, Niu Z Y, et al. Microstructure and proper-ties of the as-cast and annealing Mg-Li-Al-Zn-RE alloys[J]. Heat Treatment of Metals, 2008, 33(2): 5-8.

[6]冯林平, 陈斌, 钟皓, . β基Mg-12Li-3Al-5Zn合金的塑性变形行为[J]. 金属热处理, 2005, 30(3): 36-39.

Feng L P, Chen B, Zhong H, et al. Plastic deformation behaviors of β based Mg-12Li-3Al-5Zn alloy[J]. Heat Treatment of Metals, 2005, 30(3): 36-39.

[7]Yan H, Chen R S, Han E H. Microstructures and mechanical properties of cold rolled Mg-8Li and Mg-8Li-2Al-2RE alloys [J]. Transactions of Nonferrous Metals Society of China, 2010, 20(S2): 550-554.

[8]刘天模, 刘建忠, 卢立伟, . 双向双通道变通径挤压AZ31镁合金的显微组织及变形行为[J]. 中国有色金属学报, 2010, 20(9): 1657-1664.

Liu T M, Liu J Z, Lu L W, et al. Microstructure and deformation behavior of dual-directional extruded AZ31 magnesium alloy[J].The Chinese Journal of Nonferrous Metals, 2010, 20(9): 1657-1664.

[9]Kolleck R, Veit R, Merklein M, et al. Investigation on induction heating for hot stamping of boron alloyed steels [J]. CIRP Annals-Manufacturing Technology, 2009, 58(1): 275-278.

[10]Hoffmann H, So H, Steinbeiss H. Design of hot stamping tools with cooling system [J]. CIRP Annals -Manufacturing Technology, 2007, 56 (1):269-272.

[11]吴利斌, 孟祥瑞, 崔崇亮, . 超轻变形Mg-Li-Al-Zn合金的显微组织和性能[J]. 铸造技术, 2009, 30(10): 1256-1259.

Wu L B, Meng X R, Cui C L, et al. Microstructure and mechanical properties of super light deformation Mg-Li-Al-Zn alloy[J]. Casting Technique, 2009, 30(10): 1256-1259.

[12]Xu T C, Peng X D, Jiang J W, et al. Effect of Sr content on microstructure and mechanical properties of Mg-Li-Al-Mn alloy[J]. Transactions of Nonferrous Metals Society of China, 2014, 24 (9): 2752-2760.

[13]李瑞红,蒋斌,吴立斌,. 超轻Mg-Li-Al系变形镁合金挤压板材的组织及性能[J]. 中国有色金属学报, 2016, 26(1): 31-36.

Li R H, Jiang B, Wu L B, et al. Microstructure and mechanical properties of as-extruded ultra-light Mg-Li-Al sheet[J]. The Chinese Journal of Nonferrous Metals2016, 26(1): 31-36.

[14]崔崇亮, 刘旭贺, 吴立斌,等. 挤压变形态Mg-5Li-3Al-2Zn-x Y合金的显微组织和力学性能[J]. 稀有金属材料与工程,2013, 42(1): 89-93.

Cui C L, Liu X H, Wu L B, et al. Microstructure and mechanical properties of as-extruded Mg-5Li-3Al-2Zn-x Y alloy[J]. Rare Metal Materials and Engineering, 2013, 42(1): 89-93.

[15]贾玉鑫, 黄金亮, 冯剑. Mg-8Li-2Al-1Zn合金的热变形行为[J]. 材料热处理学报, 2014, 35(9): 210-214.

Jia Y X, Huang J L, Feng J. Hot deformation behavior of Mg-8Li-2Al-1Zn alloy[J]. Transactions of Materials and Heat Treatment, 2014, 35(9): 210-214.

[16]ASTM E 8Standard test methods for tension testing of metallic materials[S].
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com