Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Numerical simulation on cyclic closed-die forging technology
Authors: Guo Wei  Wang De  Lu Deping  Liu Keming  Wang Qudong  Zhang Li 
Unit: Institute of Applied Physics of Jiangxi Academy of Sciences Nanchang Institute of Technology Shanghai Jiao Tong University 
KeyWords: cyclic closed-die forging  repeated plastic processing  Deform-3D numerical simulation  temperature field  strain field  flow field  stress field 
ClassificationCode:TG306
year,vol(issue):pagenumber:2017,42(1):149-154
Abstract:

In order to understand the law of deformation behavior in the process of cyclic closed-die forging (CCDF), to improve the preparation process and to lay the foundation for further industrial application, the finite element analysis was performed on CCDF by numerical simulation software Deform-3D. The features of temperature field, strain field, velocity field and stress field of the sample in die forging were discussed. The results show that the upsetting deformation of the upper end of billet is earlier than the lower end when filling the cavity. Most parts of the internal sample bear compressive stress in three-dimensional directions, and the shear plastic deformation always exists because of different values and directions of flowing speed in forging. Therefore, the strain distribution is very inhomogeneous on the whole sample after an initial pass, and both strain uniformity and accumulated strain increase as sequential passes are carried on. The temperature field simulation shows that the temperature rising in the edge and surface are very apparent, while it is lower in most areas of the internal part. The experimental investigation of processing cast magnesium alloy AZ31 at 400 ℃ shows that the average grain size is refined about from 178 μm to 19 μm after four passes, and the distribution of grain is homogeneous.

Funds:
国家自然科学基金资助项目(51404151, 51561010, 51461018, 51374145);江西省科学院科研开发专项基金博士项目(2015-YYB-11); 江西省科学院协同创新专项普惠制一类项目(2015-XTPH1-11); 江西省自然科学基金重大项目(20144ACB20013); 江西省国际科技合作项目(20151BDH80006); 江西省自然科学基金重点项目(20133BAB20008); 中国博士后科学基金资助项目(2014M561466); 上海市博士后科研资助计划项目(14R21411000)
AuthorIntro:
郭炜 (1981-),男,博士,副研究员 E-mail:guowei053@163.com
Reference:
[1]马泽云. 锻造铝轮毂闭式模锻成形工艺研究[J]. 锻压技术,2015408):1-4.

Ma Z Y. Study on closed-die forging technology of forging aluminum alloy wheel[J]. Forging & Stamping Technology2015408):1-4.

[2]Terry C Lowe. Metals and alloys nanostructured by severe plastic deformation: Commercialization pathways[J]. Journal of the Minerals,Metals & Materials Society, 2006, 58(4): 28-32.

[3]Valiev R. Materials Science:Nanomaterial advantage[J]. Nature, 2002, 419(6910): 887-889.

[4]Azushima A, Kopp R, Korhonen A, et al. Severe plastic deformation (SPD) processes for metals[J]. CIRP Ann. Manuf. Technol., 2008, 57(2): 716-735.

[5]高松松, 王进. 等通道角挤压对高纯铝力学性能的影响[J]. 锻压技术,2015408):132-134.

Gao S SWang J. Influence of equal channel angular extrusion on mechanical property of high purity aluminum [J]. Forging & Stamping Technology2015408):132-134.

[6]Lee S W, Chen Y L, Wang H Y. On mechanical properties and superplasticity of Mg-15Al-1Zn alloys processed by reciprocating extrusion[J]. Mater. Sci. Eng. A, 2007, 464(1-2): 76-84.

[7]Jenei P, Yoon E Y, Gubicza J, et al. Microstructure and hardness of copper-carbon nanotube composites consolidated by high pressure torsion[J]. Mater. Sci. Eng. A, 2011, 528(13-14): 4690-4695.

[8]Alizadeh M, Talebian M. Fabrication of Al/Cup composite by accumulative roll bonding process and investigation of mechanical properties[J]. Mater. Sci. Eng. A, 2012, 558(51): 331-337.

[9]杨志高,徐永礼,庞祖高,等. 基于Deform-3D方管铝合金型材等温挤压的变速挤压数值模拟[J]. 锻压技术,2015404):152-157.

Yang Z GXu Y LPang Z Get al. Numerical simulation of variable speed extrusion for isothermal extrusion process of aluminum alloy square tube based on Deform-3D[J]. Forging & Stamping Technology2015404):152-157.

[10]Figueiredo R B, Pereira P H R, Aguilar M T P, et al. Using finite element modeling to examine the temperature distribution in quasi-constrained high-pressure torsion[J]. Acta Mater., 2012, 60(6-7): 3190-3198.

[11]Lin J B, Wang Q D, Peng L M, et al. Study on deformation behavior and strain homogeneity during cyclic-extrusion-compression[J]. J. Mater. Sci., 2008, 43(21): 6920-6924.

[12]郭炜. 反复压缩大塑性变形制备镁基复合材料的组织与性能研究[D]. 上海: 上海交通大学, 2013.

Guo W. Study on Microstructure and Properties of Magnesium Matrix Composites Fabricated by Repeated Compression Severe Plastic Deformation[D]. Shanghai: Shanghai Jiao Tong University, 2013.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com