Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Hot compression behavior of aluminum alloy 5005
Authors: Wang Xiaona Zhang Hui 
Unit: Hunan University 
KeyWords: aluminum alloy 5005  hot compression deformation  flow stress  constitutive equation  copper clad aluminum magnesium conductive bus bar 
ClassificationCode:TG146.2+1
year,vol(issue):pagenumber:2017,42(2):119-123
Abstract:
The hot compression deformation of aluminum alloy 5005 was performed with temperature 300-500 ℃ and strain rate 0.01-10 s-1 by Gleeble-3500 thermal simulator, and the flow stress of material was studied as well as the constitutive equation was built. The results show that aluminum alloy 5005 has a negativity temperature sensitivity and a positive strain rate sensitivity under the experimental conditions. The flow stress increases with the increase of deformation and tends to maintain constant after reaching a peak value, at this time the rheological curve shows steady-state rheological characteristics. Therefore, the flow stress of aluminum alloy 5005 can be represented by hyperbolic sine equation with Zener-Hollomon parameter, and the hot deformation activation energy is 180.69 kJ·mol-1.
Funds:
国家自然科学基金资助项目(51574118)
AuthorIntro:
王小娜(1989-),女,硕士研究生 张辉(1963-),男,博士,教授,博士生导师
Reference:


[1]胡学飞,郑红梅,崔接武,等. Sc元素对铜包铝镁母线性能的影响[J]. 功能材料与器件学报,2015,21(5):154-159.Hu X F, Zheng H M, Cui J W, et al. The effect of Sc on the performance of copper clad aluminum magnesium busbar [J]. Journal of Functional Materials and Devices, 2015, 21(5): 154-159.
[2]Mc Queen H J, Belling J. Alloy 5005: hot workability in relation to other Al-Mg alloys [J]. Materials Science Forum, 2000, 331: 539-544.
[3]Carmona R, Zhu Q, Sellars C M, et al. Controlling mechanisms of deformation of AA5052 aluminum alloy at small strains under hot working conditions[J]. Materials Science and Engineering: A, 2005, 393(1-2): 157-163.
[4]林启权,张辉. 5182铝合金热压缩变形流变应力[J]. 湘潭大学自然科学学报,2006,172 (6):1-6.Lin Q Q, Zhang H. Flow stress behavior of 5182 aluminum alloy under hot compression deformation [J]. Natural Science Journal of Xiangtan University, 2006, 172 (6): 1-6.
[5]Huang C Q, Diao J P, Deng H, et al. Microstructure evolution of 6016 aluminum alloy during compression at elevated temperatures by hot rolling emulation[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(6): 1576-1582.
[6]Luo J, Li M Q, Wu B. The correlation between flow behavior and microstructural evolution of 7050 aluminum alloy [J]. Materials Science and Engineering A, 2011, 530: 559-564.
[7]Charpentier P L, Stone B C, Ernst S C, et al. Characterization and modeling of the high-temperature flow behavior of aluminum alloy [J]. Metallurgical and Materials Transactions A, 1986, 17(12): 2227-2237.
[8]Verlinden B, Wouters P, McQueen H J, et al. Effect of different homogenization treatments on the hot workability of aluminum alloy AA2024[J]. Materials Science and Engineering A, 1990, 123(2): 229-237.
[9]黄伯云,李成功,石力开,等. 中国材料工程大典:第4卷,有色金属材料工程[M]. 北京:化学工业出版社,2006. Huang B Y, Li C G, Shi L K, et al. China Metals Engineering Canon:Volume 4,Nonferrous Metal Materials Engineering [M]. Beijing: Chemical Industry Press, 2006.
[10]陈波华. 铝合金热变形抗力查询系统开发[D]. 长沙:湖南大学, 2011. Chen B H. Development of Query System for Hot Deformation Resistance of Aluminum Alloys [D]. Changsha: Hunan University, 2011.
[11]Zener C, Hollomon J H. Effect of strain-rate upon the plastic flow steel [J]. Journal of Applied Physics, 1944, 15(1): 22.
[12]Jenab A, Karimi T A. Evaluation of low strain rate constitutive equation of 7075 aluminum alloy at high temperature [J]. Materials Science and Technology, 2011, 27(6): 1067-1072.
[13]寇琳媛,金能萍,张辉,等. 7150铝合金高温热压缩变形流变应力行为[J]. 中国有色金属学报,2010,20(1):43-48. Kou L Y, Jin N P, Zhang H, et al. Flow stress behavior of 7150 aluminum alloy during hot compression deformation at elevated temperature [J]. The Chinese Journal of Nonferrous Metals, 2010, 20(1): 43-48.
[14]Davenpot S B, Silk N J, Sparks C N,et al. Development of constitutive equations for modeling of hot rolling [J]. Materials Science and Technology, 2000, 16(5): 539-546.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com