Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Hot tensile flow behavior and constitutive model of aluminum alloy 2A12
Authors: Li Xianmeng  Zhan Lihua  Shen Rulin  Guo Liang 
Unit: Central South University 
KeyWords: aluminum alloy 2A12 peak stress total elongation of fracture uniform elongation constitutive model 
ClassificationCode:TG146.2
year,vol(issue):pagenumber:2017,42(4):159-164
Abstract:

Under the condition of deformation temperature of 350-500 ℃ and strain rate of 0.01-1 s-1,the hot tensile test of 2A12 aluminum alloy sheet was carried out by Gleeble-3500 thermal simulation machine. The results show that the peak stress decreases with the increase of deformation temperature and increases with the increase of strain rate. However, with the decrease of strain rate, the total elongation of fracture increases, but the uniform elongation decreases. Furthermore, when the strain rate is low, the total elongation of fracture is higher at 350-500 ℃,then declines rapidly at 500 ℃, but the uniform elongation of fracture is not sensitive to temperature change. When the strain rate is high, the total elongation of fracture is not sensitive to temperature change, and the uniform elongation decreases with the increase of temperature. According to the experimental results,a flow stress constitutive model using Z parameter is established,and the flow behavior of 2A12 aluminum alloy sheet under hot tensile deformation can be better represented.

Funds:
国家自然科学基金资助项目(51235010);湖南省自然科学基金资助项目(13JJ2009);中南大学“创新驱动计划”项目(2015CX002);高等学校博士学科点专项科研基金(20120162110003)
AuthorIntro:
李先梦(1991-),男,硕士研究生 E-mail:lxm410922@qq.com 通讯作者:湛利华(1976-),女,博士,教授 E-mail:yjs-cast@csu.edu.cn
Reference:

[1]刘春燕, 邱义伦, 王斌. 2A12铝合金热处理工艺研究[J]. 热处理, 2008, 23 (5): 59-61.


Liu C Y, Qiu Y L, Wang B. Heat treatment of process for 2A12 aluminum alloy[J]. Heat Treatment, 2008, 23 (5):59-61.


[2]赵飞. 2A12铝合金时效成形的微观组织及力学性能[D]. 大连: 大连理工大学, 2010.


Zhao F. Microstructures and Mechanical Properties of 2A12 Aluminum Alloy after Age Forming[D]. Dalian: Dalian University of Technology, 2010.


[3]Alistair F, Travor A Dean, Lin J G. Process for forming aluminum alloy sheet components: United States of America, US2012/0152416Al[P]. 2012-6-21.


[4]李春雷. 2A12 铝合金本构关系实验研究[D]. 哈尔滨: 哈尔滨工业大学复合材料与结构研究所, 2008.


Li C L. Experimental Investigation into the Constitutive Relationship of 2A12 Aluminum Alloy[D]. Harbin: Harbin Institute of Technology, Center for Composite Materials and Structure, 2008.


[5]Wang Z T, Tian R Z. Aluminum Alloys and Manual of Its Manu-facture[M]. Changsha: Central South University Press, 2005.


[6]李立新,周志峰,张涛,等. DB685钢的热变形行为及热加工图[J]. 锻压技术, 2016, 41(9): 126-129.


Li L X, Zhou Z F, Zhang T, et al. Heat deformation behavior and heat processing map of steel DB685[J]. Forging & Stamping Technology, 2016, 41(9): 126-129.


[7]李雪松, 陈军, 张鸿. 6082铝合金的热变形本构模型[J]. 中国有色金属学报, 2008, 18(10): 1769-1774


Li X S, Chen J, Zhang H. Constitutive model for hot deformation of 6082 aluminum alloy [J]. The Chinese Journal of Nonferrous Metals, 2008, 18(10): 1769-1774.


[8]丁贤飞, 张利欣, 孙冬柏, . 6005A6082铝合金热变形流变行为[J]. 北京科技大学学报, 2012, 34(9): 1041-1047.


Ding X F, Zhang L X, Sun D B, et al. Flow behavior of 6005A and 6082 aluminum alloy during hot deformation [J]. Journal of University of Science and Technology Beijing, 2012, 34(9): 1041-1047.


[9]Mcqueen H J, Fry E, Belling J. Comparative constitutive constants for hot working of Al-4.4Mg-0.7 Mn (AA5083)[J]. Journal of Materials Engineering and Performance, 2001, 10(2): 164-172.


[10]李俊鹏, 沈健, 许小静, . 7050高强铝合金高温塑性变形的流变应力研究[J]. 稀有金属, 2009, 33(3): 318-322.


Li J P, Shen J, Xu X J, et al. Flow stress of 7050 high strength aluminum alloy during high temperature plastic deformation[J]. Chinese Journal of Rare Metals, 2009, 33(3): 318-322.


[11] 李慧中, 梁霄鹏, 张新明, . 2519铝合金热变形流变行为[J].中国有色金属学报, 2005, 15(4): 621-625.


Li H Z, Liang X P, Zhang X M, et al. Hot deformation behavior of 2519 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2005, 15(4): 621-625.


[12] 高为国. 机械工程材料[M]. 长沙: 中南大学出版社, 2011.


Gao W G. Mechanical Engineering Material[M]. Changsha: Central South University Press, 2011.


[13]李光瀛,周积智. 新一代高强塑性钢的开发与应用[J]. 轧钢, 2011, 28(1): 1-10.


Li G Y, Zhou J Z. Development and application of a new generation high strength-plasticity steels[J]. Steel Rolling, 2011, 28(1): 1-10.


[14]杨扬, 高雪峰, 姜丽红, . 应变速率对AA1050纯铝微观组织的影响[J]. 粉末冶金材料科学与工程, 2015, 20(6): 937-943.


Yang Y, Gao X F, Jiang L H, et al. Effect of strain rate on microstructure of AA1050 pure aluminum[J]. Materials Science and Engineering of Powder Metallurgy, 2015, 20(6): 937-943.


[15]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics,1944, 15(1): 22-32.


[16]Shi H, Mclaren A J, Sellars C M, et al. Constitutive equations for high temperature flow stress of aluminum alloys[J]. Materials Science & Technology, 1997, 13(3): 210-216.


[17]Jonas J J, Sellars C M, Tegart W M. Strength and structure under hot-working conditions[J]. Metallurgical Reviews, 1969, 14(1): 1-24.


[18]赵俊. 铝合金热拉伸流变行为及U型件热冲压工艺研究[D]. 长沙: 中南大学, 2015.


Zhao J. Research on Flow Behavior of AA6061 during Hot Tensile Test and Hot Stamping Process for U-shape Parts[D]. Changsha: Central South University, 2015.


[19]张辉, 伍豪杰, 蒋福林. 4045铝合金热变形行为及其加工图[J]. 湖南大学学报, 2013, 40(8): 83-89.


Zhang H, Wu H J, Jiang F L. Hot deformation behavior and processing map of 4045 aluminum alloy[J]. Journal of Hunan University, 2013, 40(8): 83-89.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com