Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of process parameters and numerical simulation on
Authors: Wang Bowei Tang Jun Zeng Weidong Zhang Shuai Qin Weidong 
Unit: AVIC Shaanxi Hong Yuan Aviation Forging Co.  Ltd. School of Materials Science and Engineering  Northwestern Polytechnical University 
KeyWords: titanium alloy TC17  integral blisk  β phase  isothermal forging  finite element simulation strain 
ClassificationCode:TG146.2
year,vol(issue):pagenumber:2017,42(6):7-11
Abstract:

The isothermal forging process of integral blisk for titanium alloy TC17 in β zone was numerically simulated by twodimensional (2D) finite element (FEM) software Deform2D, and the distributions of equivalent strain fields in different parts of integral blisk were studied. Then, the process parameters and the size of wasted billet were optimized based on the results of FEM simulation, and the experiments of isothermal forging process of titanium alloy TC17 were carried out. The experiment results show that the initial coarse β phase grains of titanium alloy TC17 are fully deformed, and the bending and intermittent small α phases are precipitated in grain boundary. However, the interlaced and slender ideal secondary α phases are precipitated in intracrystalline to exhibit the basketweave microstructure after the isothermal forging process. The strength, plasticity and fracture toughness of the integral blisk forging can be matched ideally when the strain reaches 0.75.

Funds:
陕西省科技创新项目(20146102120054)
AuthorIntro:
王波伟(1983-),男,硕士,工程师
Reference:


[1]Martin G, Naze L, Cailletaud G. Numerical multiscale simulations of the mechanical behavior of β-metastable titanium alloys Ti5553 and Ti17[J]. Procedia Engineering, 2011, 10: 1803-1808.



[2]Gerhard W, Boyer R R, Collings E W. Materials Properties Handbook: Titanium Alloys[M]. Ohio:ASM, 1994.



[3]Salishchev G, Zerebtsov S V, Mironov S Y, et al. Formation of grain boundary misorientation spectrum in alpha-beta titanium alloys with lamellar structure under warm and hot working[J]. 2004, 467:501-506.


[4]徐斌,王晓英,周建华, 等. TC17 钛合金在热变形过程中的组织演变规律[J]. 中国有色金属学报, 2010, 20(1): 167-172.


Xu B, Wang X Y, Zhou J H, et al. Microstructure evolvement regularity of TC17 titanium alloy in hot deformation[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(1): 167-172.



[5]孙新,曾卫东,张志金,等. 热工艺参数对 TC17 合金静态球化动力学的影响[J]. 中国有色金属学报, 2015, 25(1):9-14.


Sun X, Zeng W D, Zhang Z J, et al. Effect of thermal processing parameters on static globularization kinetics of TC17 alloy[J].The Chinese Journal of Nonferrous Metals, 2015, 25(1):9-14.



[6]田飞, 曾卫东, 马雄,等. 基于定量金相学的TC17钛合金片层组织取向行为分析[J]. 稀有金属材料与工程, 2012, 41(6):998-1003.


Tian F, Zeng W D, Ma X, et al. Quantitative analysis of the orientation of lamellar α in TC17 titanium alloy[J]. Rare Metal Materials and Engineering, 2012, 41(6): 998-1003.



[7]Ma X, Zeng W, Sun Y, et al. Modeling constitutive relationship of Ti17 titanium alloy with lamellar starting microstructure[J]. Materials Science & Engineering A, 2012, 538(11):182-189.



[8]姚泽坤,郭鸿镇,杨陈,等. 形变、相变交互作用对Ti17合金等温锻件显微组织和力学性能影响规律研究[J]. 稀有金属材料与工程, 2003, 32(7): 538-541.


Yao Z K, Guo H Z, Yang C, et al. Effects of the interaction of deformation and phase change on microstructure and mechanical properties of Ti-17 Alloy[J]. Rare Metal Materials and Engineering, 2003, 32(7): 538-541.



[9]孟庆通,庞克昌,王晓英. 钛合金整体叶盘等温锻造技术[J]. 上海钢研, 2006, (2): 16-19.


Meng Q T, Pang K C, Wang X Y. The isothermal forging technology of titanium alloy blisk[J]. Journal of Shanghai Iron & Steel Research, 2006, (2): 16-19.



[10]吴瑞恒,庞克昌,徐祖耀, 等. 整体叶盘等温成形的计算机模拟与分析[J]. 宝钢技术,2005, (5): 47-50.


Wu R H, Pang K C, Xu Z Y, et al. Computer simulation and analysis of the isothermal formation of vaneintegrated disk[J]. Bao Steel Technology, 2005, (5): 47-50.



[11]Wang T, Guo H, Tan L, et al. Beta grain growth behaviour of TG6 and Ti17 titanium alloys[J]. Materials Science & Engineering A, 2011, 528(21):6375-6380.



[12]Russ S M. Effect of LCF on HCF crack growth of Ti-17[J]. International Journal of Fatigue, 2005, 27(10-12):1628-1636.



[13]Hiroaki Matsumoto, Masami Kitamura, Li Y P, et al. Hot forging characteristic of Ti-5Al-5V-5Mo-3Cr alloy with single metastable β microstructure[J]. Materials Science & Engineering A, 2014, 611:337-344.



[14]李波,张沛.TC4合金高温拉伸变形力学行为与微观组织演变关联研究[J].锻压技术,2015, 40(6):108-115.


Li B, Zhang P. Study on the correlation of flow behavior and microstructure evolution during the high temperature tensile deformation of TC4 alloy[J]. Forging & Stamping Technology, 2015, 40(6):108-115.



[15]姚彭彭, 李萍, 李成铭,等. TA15钛合金β热变形行为及显微组织[J]. 稀有金属, 2015, 39(11):967-974.


Yao P P, Li P, Li C M, et al. Hot deformation behavior and microstructure of TA15 titanium alloy in β field[J]. Chinese Journal of Rare Metals, 2015, 39(11):967-974.



[16]刘少轩,邓磊,王新云,等. TC4钛合金降温压缩变形行为[J]. 塑性工程学报,2016,24(6):162-166.


Liu S X, Deng L, Wang X Y, et al. Behavior of cooling compression for TC4 titanium alloy [J]. Journal of Plasticity Engineering. 2016,24 (6):162-166.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com