Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Optimization design on cold extrusion changeable interference combined mould for large module gear based on particle swarm optimization
Authors: Chen Yingying Feng Wenjie Kuang Zhiyun  Li Dong 
Unit: Chongqing University of Technology 
KeyWords: large module cylindrical spur gear  cold extrusion  combined mould  changeable interference particle swarm optimization 
ClassificationCode:TG376
year,vol(issue):pagenumber:2017,42(8):122-128
Abstract:

For the crack problem of combined die in cold extrusion process of large module cylindrical spur gear, the design method of changeable interference combined mould was proposed. Then, the Kriging model with changeable interference combined mould structure parameters and integrated weighted score was established by design variables of the diameter ratio, the angle of inner wall of shrink ring and the interference coefficient and the optimization objective of reducing the equivalent stress of the inner wall of mould core, avoiding the circumferential tensile stress and plastic deformation of the inner and outer ring. The optimal process parameters with n2=1.55,n3=2.55,γ′=1.25°,β2=2.5‰,β3=2.4‰ in the variable space were found by the Kriging model combined with particle swam optimization. The research results show that the design method of the changeable interference combined mould can avoid the fracture of the combined mould and prolong the service life of mould.

Funds:
重庆市教委科学技术研究资助项目(KJ1400944);重庆市科委资助项目(cstc2014yykfA60001)
AuthorIntro:
陈莹莹(1979-),女,硕士,副教授
Reference:


[1]洪慎章. 冷挤压实用技术[M]. 北京: 机械工业出版社, 2005.Hong S Z. Cold Extrusion Technology [M]. Beijing: China Machine Press, 2005.
[2]胡成亮, 袁兆峰, 蔡冰, 等. 齿形组合凹模弹性变形规律分析[J]. 锻压装备与制造技术, 2008, 43(5): 84-87.Hu C L, Yuan Z F, Cai B, et al. Elastic deformation rules of gear-shape combination die [J]. China Metalforming Equipment & Manufacturing Technology, 2008, 43(5): 84-87.
[3]胡成亮. 直齿轮冷精锻成形数值模拟分析与实验研究 [D]. 合肥: 合肥工业大学, 2005.Hu C L. Numerical Simulation and Experimental Research of Cold Net-shape Forming of Spur Gear [D]. Hefei: Heifei University of Technology, 2005.
[4]王强, 昌木松, 陈忠家, 等. 圆柱直齿轮挤压组合凹模的优化设计[J]. 合肥工业大学学报:自然科学版, 2008, 31(9): 1415-1418.Wang Q, Chang M S, Chen Z J, et al. Optimum design of combined extrusion die for cylindrical spur gear[J]. Journal of Heifei of Technology: Natural Science, 2008, 31(9):1415-1418.
[5]Eyercioglu O, Kutuk M A, Yilmaz N F. Shrink fit design for precision gear forging dies [J]. Journal of Materials Processing Technology, 2009, 209:2186-2194.
[6]Lee H C, Saroosh M A, Song J H, et al. The effect of shrink fitting ratios on tool life in bolt forming processes [J]. Journal of Materials Processing Technology, 2009, 209:3766-3775.
[7]张渝, 胡启国, 张甫仁. 基于粒子群算法的冷挤压模具结构参数优化设计[J]. 中国机械工程, 2010, 21(8): 1003-1007.Zhang Y, Hu Q G, Zhang F R. Optimum design of structural parameters of cold extrusion dies based on particle swarm optimization [J]. China Mechanical Engineering, 2010, 21(8):1003-1007.
[8]张渝, 周杰, 胡启国. 基于粒子群算法的预挤压组合凹模优化设计[J]. 热加工工艺, 2010, 39(3): 95-97.Zhang Y, Zhou J, Hu Q G. Optimization design of combined die for cold extrusion based on particle swarm optimization [J]. Hot Working Technology, 2010, 39(3):95-97.
[9]张渝. 基于代理模型的锻造模具结构智能优化研究[D]. 重庆: 重庆大学, 2009.Zhang Y. Forging-die Structure Intelligent Optimization Research Based on Surrogate Model [D]. Chongqing: Chongqing University, 2009.
[10]敖文刚, 伍太宾. 齿形组合凹模等强度分析及优化[J]. 塑性工程学报, 2016, 23(5): 36-43.Ao W G, Wu T B. Unified strength analysis and optimization of combined die for spur gear [J]. Journal of Plasticity Engineering, 2016, 23(5): 36-43.
[11]吴建民,陶菊春. 用综合加权评分法优化钻井泥浆配方的研究[J]. 农业工程学报, 2002, 18(2): 45-48.Wu J M, Tao J C. Experimental study on optimizing mud prescription for well drilling by using comprehensively weighted grading method [J]. Transactions of the CSAE, 2002, 18(2):45-48.
[12]Liu W, Yan Y Y. Multi-objective optimization of sheet metal forming process using pareto based genetic algorithm [J]. Journal of Materials Processing Technology, 2008, 208: 499-506.
[13]Palanivel R, Mathews P K. Prediction and optimization of process parameter of friction stir welded AA5083-H111 aluminum alloy using response surface methodology[J]. Journal of Central South University, 2012, 19(1): 1-8.
[14]Lophaven S N, Nielsen H B, Sondergaard J. DACE a matlab kriging toolbox [EB/OL].http://www.imm.dtu.dk/~hbn/dace/, 2007-11-07.
[15]孙新强, 谢延敏, 田银, 等. 基于小波神经网络和粒子群算法的铝合金板冲压回弹工艺参数优化[J]. 锻压技术, 2015, 40(1): 137-142.Sun X Q, Xie Y M, Tian Y, et al. Parameters optimization of stamping and springback for aluminum-alloy sheet based on wavelet neural network and particle swarm optimization algorithm [J]. Forging & Stamping Technology, 2015, 40(1):137-142.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com