Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Forming law experiment of tungsten-based alloy powders used for jewelry by high velocity compaction technology
Authors: Ma Chunyu  Yuan Junping Chen Xiangping 
Unit: Guangzhou Panyu Polytechnic 
KeyWords: serial alloy WC-Ni-Cr3C2-P  tungsten-based alloy high velocity compaction  compaction energy  ratio of height to diameter  density of mass energy 
ClassificationCode:TG144
year,vol(issue):pagenumber:2017,42(8):157-164
Abstract:

For WC-Ni-Cr3C2-P alloy powders, influences of ratio of particle sizes, preheating process, compaction energy, ratio of height to diameter and density of mass energy on billet density, sintered density, springback effect and sintered radial shrinkage were investigated by density test and SEM. The results show that alloy powders WC-Ni-Cr3C2-P consisted of WC(2 μm)and WC(0.4 μm)have better forming properties. However, the preheating does not improve the forming properties of the alloy powders, and the billet appears crack when the paraffin wax is not added as organic forming solvent. It can ensure that the compression energy range of forming is narrower, but it is higher than which is both in the billet density and the sintered density when the organic forming solvent is added. The results show that when the compaction energy is 1425 J, the billet density and the sintered density without organic forming solvent are 10.67 g·cm-3 and 13.48 g·cm-3 respectively, while they increase to 9.99 g·cm-3 and 13.39 g·cm-3 respectively when the organic forming solvent is added. Therefore, the billet density increases with the increasing of density of mass energy. Furthermore, the critical points of the density of mass energy are 101.79 J·g-1 for the powders with paraffin wax and 118.75 J·g-1 for the powders without paraffin wax. When the density of mass energy exceeds the critical point, the billet density can not be improved further.

Funds:
广东省一流高职院校建设计划项目(粤教高函(2016)250号);广州市属高校科技项目(2012A006)
AuthorIntro:
马春宇(1981-),男,硕士,副教授
Reference:


[1]袁军平,王昶.流行饰品材料及生产工艺 [M]. 2版.武汉:中国地质大学出版社,2015.Yuan J P, Wang C. Fashion Jewelry Material and Processing [M]. Second Edition. Wuhan:Press of China University of Geosciences,2015.
[2]Sethi G,Hauck E,German R M. High velocity compaction compared with conventional compaction [J]. Materials Science and Technology, 2006, 22 (8): 955-959.
[3]王建忠,曲选辉,尹海清,等.铁粉的高速压制成形[J].材料研究学报,2008,22(6):589-592.Wang J Z, Qu X H, Yin H Q,et al. High velocity compaction of ferrous powder [J]. Chinese Journal of Materials Research,2008,22(6):589-592.
[4]王建忠,曲选辉,尹海清,等.电解铜粉高速压制成形[J].中国有色金属学报,2008,18(8):1498-1503.Wang J Z, Qu X H, Yin H Q,et al. High velocity compaction of electrolytic copper powder [J]. The Chinese Journal of Nonferrous Metals,2008,18(8):1498-1503.
[5]闫志巧,陈峰,蔡一湘,等. Ti粉的高速压制成形及表征[J].金属学报,2010,46 (2):227-232.Yan Z Q, Chen F, Cai Y X,et al. High velocity compaction and characteristics of Ti powder [J].Acta Metallurgica Sinica,2010,46 (2):227-232.
[6]Eriksson M,Andersson M,Adolfsson E,et al. Titanium hydroxyapatite composite biomaterial for dental implants [J]. Powder Metallurgy,2006,49(1):70-77.
[7]Bos B,Fors C,Larsson T. Industrial implementation of high velocity compaction for improved properties [J]. Powder Metallurgy,2006,49 (2):107-109.
[8]张启旺,王志法,余惺,等.高速压制法制备90W-10Cu复合材料[J].粉末冶金材料科学与工程,2010,15 (1):27-31.Zhang Q W,Wang Z F, Yu X, et al. 90W-1OCu composite materials fabricated by high velocity compaction technology [J]. Materials Science and Engineering of Powder Metallurgy,2010,15(1):27-31.
[9]余惺,王志法,张启旺,等.高速压制技术(HVC)在制备W-15Cu合金中的应用[J]. 粉末冶金技术,2010,28(6):448-452.Yu X, Wang Z F, Zhang Q W,et al. The application of high velocity compaction technology to preparation of W-15Cu alloy [J]. Powder Metallurgy Technology,2010,28(6):448-452.
[10]关航健.机械蓄能式粉末高速压制成形设备研究[D].广州: 华南理工大学, 2012.Guan H J. Study on Mechanical Energy Stored Type Powder High Velocity Compaction Machine[D].Guangzhou: South China University of Technology,2012.
[11]GB/T 5163—2006,烧结金属材料(不包括硬质合金)可渗性烧结金属材料密度、含油率和开孔率的测定[S].GB/T 5163—2006,Sintered metal materials, excluding hardmetals—Permeable sintered metal materials—Determination of density, oil content, and open porosity [S].
[12]GB/T 5159—2015,金属粉末(不包括硬质合金用粉)与成型和烧结有联系的尺寸变化的测定方法[S].GB/T 5159—2015,Metallic powders, excluding powders for hardmetals—Determination of dimensional changes associated with compacting and sintering [S].
[13]方琴,张崇才,章雪,等.粉体粒度对钨钴钛硬质合金烧结特性的影响[J].西华大学学报:自然科学版,2009,28 (6):105-108.Fang Q, Zhang C C, Zhang X, et al. Influence of particle size on the sintering characteristic of WC-TiC-Co cemented carbide[J].Journal of Xihua University: Natural Science Edition,2009,28(6):105-108.
[14]李超杰.316L不锈钢温粉末高速压制成形规律及其致密化机理的研究[D].广州:华南理工大学,2012.Li C J. Investigation on Densification Mechanism and High Velocity Compaction of Warm 316L Stainless Steel Powders[D].Guangzhou: South China University of Technology,2012. 

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com