Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Effect of groove pressing on microstructure and properties of pure copper
Authors: Zhang Xiumei  Jiang Bingchun 
Unit: Guangdong Baiyun University Guangdong University of Science and Technology 
KeyWords: constrained groove pressing technology  severe plastic deformation grain refinement  microstructure mechanical properties 
ClassificationCode:TG113;TG146
year,vol(issue):pagenumber:2017,42(9):146-149
Abstract:

Pure copper was deformed by the constrained groove pressing technology, and the influences of groove pressing on microstructure and mechanical properties of pure copper were studied. The results show that the constrained groove pressing is an effective way of refining the grain size of pure copper, and the average grain size of pure copper decreases by 63% after 10 passes. At the beginning of plastic deformation(2 passes),the effect of refining is most obvious, after the same passes of the constrained groove pressing, the effect of refining reduces gradually. However, the micro hardness and tensile strength of material increase significantly after the constrained groove pressing, and the elongation of copper decreases. Thus, the hardness and tensile strength of material increase nearly 96%and 32% respectively, and the elongation of copper decreases from 66.67% to 12.25%.

Funds:
广东省青年创新人才类项目资助(2015KQNCX192);白云学院院级项目资助(BYKY20155)
AuthorIntro:
作者简介:张秀妹(1988-),女,硕士,助教 E-mail:654874847@qq.com 通讯作者:姜炳春(1987-),男,硕士,讲师 E-mail:jiangbingchun_2008@163.com
Reference:


[1]Dong H S, Park J J, Kim Y S, et al. Constrained groove pressing and its application to grain refinement of aluminum[J]. Materials Science & Engineering A, 2002, 328(1):98-103.



[2]Dong H S, Kim B C, Kim Y S, et al. Microstructural evolution in a commercial low carbon steel by equal channel angular pressing[J]. Acta Materialia, 2000, 48(9):2247-2255.



[3]Krishnaiah A, Chakkingal U, Venugopal P. Production of ultrafine grain sizes in aluminium sheets by severe plastic deformation using the technique of groove pressing[J]. Scripta Materialia, 2005, 52(12):1229-1233.



[4]Shirdel A, Khajeh A, Moshksar M M. Experimental and finite element investigation of semi-constrained groove pressing process[J]. Materials & Design, 2010, 31(2): 946-950.



[5]Morattab S, Ranjbar K, Reihanian M. On the mechanical properties and microstructure of commercially pure Al fabricated by semi-constrained groove pressing[J]. Materials Science and Engineering: A, 2011, 528(22): 6912-6918.



[6]彭开萍, 牟雪萍, 马玉声. 退火温度对模压形变后冷轧Cu-35Zn合金热稳定性的影响[J]. 材料热处理学报, 2014, 35(7):32-36.


Peng K P, Mou X P, Ma Y S. Effects of annealing temperature on thermal stability of  Cu-35Zn alloy processed  by constrained groove pressing and cold rolling[J]. Transactions of Materials and Heat Treatment, 2014, 35(7): 32-36.



[7]Peng K, Zhang Y, Shaw L L, et al. Microstructure dependence of a Cu-38Zn alloy on processing conditions of constrained groove pressing[J]. Acta Materialia, 2009, 57(18):5543-5553.



[8]张秀妹, 彭开萍. 层错能对模压形变后材料组织与性能的影响[J]. 材料热处理学报, 2014, 35(10):75-81.


Zhang X M,Peng K P. Effects of stacking fault energy on microstructure and properties of materials deformed by constrained groove pressing[J]. Transactions of Materials and Heat Treatment, 2014, 35(10): 75-81.



[9]杨开怀, 邹泽昌, 傅枞春. 模压变形低碳钢板材的组织结构与力学性能[J]. 塑性工程学报, 2015, 22(3):54-57.


Yang K H, Zou Z C, Fu C C. Microstructures and mechanical properties of low carbon steel sheets processed by groove pressing[J]. Journal of Plasticity Engineering, 2015, 22(3):54-57.



[10]杨中伟, 晏桂珍, 王国彪,等. AP1000钢安全壳封头瓣片模压成形回弹模拟及补偿[J]. 锻压技术, 2015, 40(8):30-34.


Yang Z W, Yan G Z, Wang G B, et al. Springback simulation and compensation of molded forming for steel AP1000 containment vessel head petals[J]. Forging & Stamping Technology, 2015, 40(8):30-34.



[11]张秀妹. 不同层错能材料经模压形变后的晶粒细化和热稳定性[D]. 福州:福州大学,2014.


Zhang X M. Grain Refinement and Thermal Stability of Materials with Different Stacking Fault Energy Subjected to Constrained Groove Pressing[D]. Fuzhou: Fuzhou University,2014.



[12]GB/T 228.1—2010,金属材料拉伸试验第1部分:室温试验方法[S].


GB/T 228.1—2010, Metallic materials—Tensile testing—Part 1: Method of test at room temperature[S].



[13]彭开萍, 张秀妹, 林雪慧. 等效应变对Cu-38Zn合金交叉模压形变后组织和性能的影响[J]. 材料热处理学报, 2014, 35(2):199-204.


Peng K P, Zhang X M, Lin X H. Influence of equivalent strain on microstructure and hardness of Cu-38Zn alloy subjected to cross groove pressing[J]. Transactions of Materials and Heat Treatment, 2014, 35(2): 199-204.



[14]吴世丁, 安祥海, 韩卫忠, 等. 等通道转角挤压过程中fcc金属的微观结构演化与力学性能[J]. 金属学报, 2010, 46(3): 257-276.


Wu S D, An X H, Han W Z, et al. Microstructure evolution and mechanical properties of fcc metallic materials subjected to equal channel angular pressing[J]. Acta Metallurgica Sinica, 2010, 46(3): 257-276.

 

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com