Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Treatment methods on relative motion between clamp and hammer in numerical simulation of rotary forging for titanium alloy wire
Authors: Zheng Bangzhi  Tang Xinxin  Tian Xiaolin  Wang Liya  Shen Xueliang  
Unit: Pangang Group Research Institute Co.  Ltd. 
KeyWords: titanium alloy  wire rotary forging  numerical simulation  ABAQUS / Explicit  hammer revolution  clamp rotation 
ClassificationCode:TG316
year,vol(issue):pagenumber:2017,42(10):195-202
Abstract:

Two kinds of rotary forging finite element models of clamp rotation and hammer revolution for titanium alloy wire were established by the ABAQUS/Explicit simulation software, and the determining on the boundary conditions of contact and movement of two models was introduced. Based on the simulation results, the causes of ellipticity differences of the wire formed by clamp rotation and clamp fixed were analyzed. Then, the radial stress, strain and diameter difference of two models were analyzed by means of numerical simulation, and the calculation time of two models under different mass scaling coefficients was compared. The results show that the calculation time by the hammer revolution model is significantly less than that of clamp rotation model, and the diameter difference and forming structure uniformity by the hammer revolution model is better than that of clamp rotation model. Therefore, the hammer revolution model is suitable for the simulation analysis of rotary forging for titanium alloy wire. In addition, according to the simulation results of two models, the hammer revolution model is verified by the experiment results, which are consistent with the simulation results. Thus, the established numerical simulation method can guide the actual production.

Funds:
AuthorIntro:
作者简介:郑帮智(1988-),男,硕士,工程师,E-mail:zbz315@126.com
Reference:

[1]王海波,毛小南, 李东, .钛及钛合金丝材制备工艺的研究现状[J].热加工工艺, 2008, 37(14): 99-103.


Wang H B, Mao X N, Li D, et al. Research status in preparation process for titanium and titanium alloy wire[J]. Hot Working Technology, 2008, 37(14):99-103.


[2]赵升吨, 张玉亭. 旋锻技术的研究现状及其应用[J]. 锻压装备与制造技术, 2010, 45(2):16-20.


Zhao S D, Zhang Y T. Research status and its application of rotary swag technique[J]. China Metalforming Equipment & Manufacturing Technology, 2010, 45(2):16-20.


[3]张琦, 母东,  靳凯强,等. 旋转锻造成形技术研究现状[J]. 锻压技术, 2015, 40(1):1-6.


Zhang Q, Mu D, Jin K Q, et al. Research status of rotary forging technology [J]. Forging & Stamping Technology, 2015, 40(1):1-6.


[4]甘国强, 李萍, 薛克敏, . TA15钛合金热变形过程中基于介观尺度的相变模拟研究[J]. 稀有金属, 2015, 39(1):91-96.


Gan G Q, Li P, Xue K M, et al. Mesoscopic simulation of phase transformation in TA15 alloy based on isothermal hot compression[J]. Chinese Journal of Rare Metals, 2015, 39(1):91-96.


[5]Kocich R, Kuncˇická L, Dohnalík D, et al. Cold rotary swaging of a tungsten heavy alloy: Numerical and experimental investigations[J]. International Journal of Refractory Metals & Hard Materials, 2016, 61:264-272.


[6]Rong L, Nie Z R, Zuo T Y. FEA modeling of effect of axial feeding velocity on strain field of rotary swaging process of pure magnesium[J]. Transactions of Nonferrous Metals Society of China, 2006, 16(5):1015-1020.


[7]秦文瑜, 卢曦, 高文贵,. 无芯棒式旋锻工艺参数对传动轴表面质量的影响[J]. 塑性工程学报, 2014, 21(6):14-19.


Qin W Y, Lu X, Gao W G, et al. Surface quality of monobloc tube shaft under different process parameters in rotary swaging without mandrel[J]. Journal of Plasticity Engineering, 2014, 21(6):14-19.


[8]庄茁,张帆,岑松,等. ABAQUS 非线性有限元分析与实例[M]. 北京: 科学出版社, 2005.


Zhuang Z, Zhang F, Cen S, et al. ABAQUS Nonlinear Finite Element Analysis and Examples[M]. Beijing: Science Press, 2005.


[9]肖宏, 申光宪, 木原谆二,. 三维弹塑性接触边界元法对摩擦的处理[J]. 工程力学, 1997, 14(4): 83-88.


Xiao H, Shen G X, Aizawa T, et al. The friction model for three dimensional elastoplastic contact boundary element method[J]. Engineering Mechanics, 1997, 14(4): 83-88.


[10]ABAQUS Inc. ABAQUS Analysis User′s Manual[M].Version 6.12. Providence: ABAQUS Inc., 2010.


[11]栾谦聪, 董湘怀, 吴云剑. 径向锻造工艺参数对锻透性的影响[J]. 中国机械工程, 2014, 25(22):3098-3103.


Luan Q C, Dong X H, Wu Y J. Effects of process parameters on FPE in radial forging processes[J]. China Mechanical Engineering, 2014, 25(22):3098-3103.


[12]董节功, 周旭东, 朱锦洪,. 径向锻造三维成形锻透性的数值模拟[J]. 机械工程材料, 2007, 31(3):76-78.


Dong J G, Zhou X D, Zhu J H, et al. FEM simulation of forging penetration efficiency of radial forging in 3D[J]. Materials for Mechanical Engineering, 2007, 31(3):76-78.


[13]Liu X R, Zhou X D. The forging penetration efficiency of C45 steel stepped shaft radial forging with GFM forging machine[J]. Advanced Materials Research, 2010, 154-155:593-596.


[14]GJB 2219—1994, 紧固件用钛及钛合金棒(线)材规范[S].


GJB 2219—1994, Specification for titanium and titanium alloy bars (wires) for jastener [S].

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com