Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Prediction on deep drawing of fuel-tank end cap based on BP artificial neural network
Authors: Li Bing  Jiang Hailin  Liu Kuiwu  Gao Peng 
Unit: Jiangsu Food  Pharmaceutical Science College  Huaiyin Institute of Technology  Occupational Skill Testing Authority Ministry of Huai′an 
KeyWords: fuel-tank end cap  BP artificial neural network  deep drawing  orthogonal test  numerical simulation 
ClassificationCode:TG385
year,vol(issue):pagenumber:2017,42(11):177-180
Abstract:
For fuel-tank end cap, the deep drawing process of fuel-tank end cap was simulated by software DYNAFORM. The deep drawing test indicates that the relative errors between experiment value and simulation value of the maximum thinning ratio and the maximum thickening rate of sheet metal are 9.26% and 8.32% respectively, and the correctness of finite element model is verified. Then, the design of finite element simulation test was carried out by orthogonal test, and the quality of sheet metal forming was predicted based on BP artificial neural network. Furthermore, three layers of 3-11-1 for BP artificial neural network were established with the input layer of stamping speed, die clearance and blank holder force and the output layer of the maximum thinning rate of sheet metal forming. The error between predicted value of BP artificial neural network and numerical simulation value is 2.15% by the training and testing of BP artificial neural network. Therefore, the accuracy of BP artificial neural network applied to deep drawing of fuel-tank end cap was verified.
Funds:
淮安市重点研发计划(工业及信息化)(HAG201614)
AuthorIntro:
作者简介:李兵(1983-),男,硕士,讲师 E-mail:spxylb@163.com
Reference:
[1]马国英, 黄彬兵, 苏春建, 等. 汽车翼子板拉深成形模拟及工艺参数优化[J]. 锻压技术, 2015, 40(3): 21-24.

Ma G Y, Huang B B, Su C J, et al. Simulation and parameters optimization of deep drawing for automobile fender[J]. Forging & Stamping Technology, 2015, 40(3): 21-24. 

[2] 朱梅云, 傅建, 崔礼春. 基于伺服技术的板材冲压成形性研究[J]. 锻压技术, 2014, 39(10): 43-46.

Zhu M Y, Fu J, Cui L C. Research on the formability of steel plate based on servo technology[J]. Forging & Stamping Technology, 2014, 39(10): 43-46. 

[3] 刘驰. 侧围外板冲压成形仿真技术与应用[J]. 锻压技术, 2014, 39(1): 41-45.

Liu C. Simulation and application of stamping process for side-frame outer panel[J]. Forging & Stamping Technology, 2014, 39(1): 41-45. 

[4] 林策, 彭艳, 孙建亮, 等. 板形缺陷板料冲压变形及回弹仿真分析[J]. 锻压技术, 2012, 37(6): 174-178.

Lin C, Peng Y, Sun J L, et al. Stamping deformation and springback simulation analysis of sheet metal with shape defects[J]. Forging & Stamping Technology, 2012, 37(6): 174-178. 

[5] 宫晓峰, 于仁萍. 基于Autoform汽车后围上盖板拉延成形模拟应用[J]. 锻压技术, 2014, 39(4): 149-153.

Gong X F, Yu R P. Application of drawing simulation for automobile reinforcement upper back based on Autoform[J]. Forging & Stamping Technology, 2014, 39(4): 149-153. 

[6] 张涛, 樊文欣, 郭代峰, 等. 基于BP神经网络的温挤压模具磨损量预测[J]. 锻压技术, 2017, 42(2): 178-182.

Zhang T, Fan W X, Guo D F, et al. Prediction on wear loss of warm extrusion die based on BP neural network[J]. Forging & Stamping Technology, 2017, 42(2): 178-182. 

[7] 王晓莉, 穆瑞, 张咏琴. 基于BP神经网络的薄板成形回弹仿真预测[J]. 锻压技术, 2016, 41(6): 146-149.

Wang X L, Mu R, Zhang Y Q. Numerical prediction of springback in sheet metal forming based on BP neural network[J]. Forging & Stamping Technology, 2016, 41(6): 146-149. 

[8] 庞敬礼. 基于BP神经网络的传力片冲裁凸模磨损仿真预测[J]. 锻压技术, 2016, 41(11): 114-117.

Pang J L. Simulation prediction on blanking punch wear of leaf spring based on BP neural network[J]. Forging & Stamping Technology, 2016, 41(11): 114-117.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com