Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Hot deformation behavior and processing map of austenite stainless steel 304
Authors: Liao Xiping Xie Qijun Hu Chengliang Zhao Zhen 
Unit: Shanghai Jiao Tong University Shanghai Winkelmann Longchuan (SWL) Motorcomponents Co.  Ltd. 
KeyWords: austenite stainless steel 304  hot compression  constitutive equation  processing map  microstructure evaluation 
ClassificationCode:TG142.71
year,vol(issue):pagenumber:2017,42(12):150-156
Abstract:

 The uniaxial hot compress experiments of austenite stainless steel 304 with strain rate of 0.1-10 s-1 and temperature range of 850-1200 ℃ were carried out by Gleebe-1500 thermal mechanical simulation machine. Based on the experimental data, the flow stress of austenite stainless steel 304 has a significant influence on the change of temperature and strain rate, the greater the strain rate is, the lower the deformation temperature and the greater the flow stress are. Then, the constitutive equation was deduced by Arrhenius mode to calculate the activation energy of heat forming for austenite stainless steel 304 which was 486.0 kJ·mol-1, and the hot processing map was established under the true strain of 0.7. The analysis of microstructure shows that the dynamic recrystallization happens with the temperature range of 1025-1200 ℃, the strain rate range of 0.1-0.8 s-1 and the efficiency of power dissipation over 26%, which are the optimum technology parameters for austenite stainless steel 304.

 
Funds:
国家自然科学基金资助项目(51475294)
AuthorIntro:
作者简介:廖喜平(1992-),男,硕士研究生 E-mail:Simon-liao@sjtu.edu.cn 通讯作者:胡成亮(1980-),男,博士,副研究员 E-mail:clhu@sjtu.edu.cn
Reference:

 


 


[1]孟亚惠, 季根顺, 樊丁, 等. 不锈钢高温组织与高温力学性能研究进展[J]. 热加工工艺, 2009, 38(4):12-16. 

 

Meng Y H, Ji G S, Fan D, et al. Research progress of high-temperature microstructure and mechanical property of stainless steel[J]. Hot Working Technology, 2009, 38(4):12-16.

 


[2]Wang C J, Feng H, Zheng W J, et al. Dynamic recrystallization behavior and microstructure evolution of AISI 304N stainless steel[J]. Journal of Iron and Steel Research, 2013, 20(10):107-112.

 


[3]刘光辉, 刘华, 王伟钦,等. 316 L不锈钢压缩热变形行为及临界损伤值研究[J]. 锻压技术, 2016, 41(2):118-123.

 

Liu G H, Liu H, Wang W Q, et al. Study on compressed thermal deformation behavior and critical damage value of stainless steel 316L[J]. Forging & Stamping Technology, 2016, 41(2):118-123.

 


[4]Dehghan-Manshadi A, Barnett M R, Hodgson P D. Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation[J]. Materials Science & Engineering A, 2008, 485(1-2):664-672.

 


[5]Parsa M H, Ohadi D. A constitutive equation for hot deformation range of 304 stainless steel considering grain sizes[J]. Materials & Design, 2013, 52(24):412-421.

 


[6]潘红波, 唐荻, 胡水平, 等. 平面应变压缩技术的研究[J]. 锻压技术, 2008, 33(2):75-79.

 

Pan H B, Tang D, Hu S P, et al. Study on plane strain physical compression technology[J]. Forging & Stamping Technology, 2008, 33(2):75-79. 

 


[7]王艳, 王明家, 蔡大勇, 等. 高强度奥氏体不锈钢的热变形行为及其热加工图[J]. 材料热处理学报, 2005, 26(4):65-68.

 

Wang Y, Wang M J, Cai D Y, et al. Hot deformation behavior and processing maps of high strength austenite stainless[J]. Transactions of Materials and Heat Treatment, 2005, 26(4):65-68.

 


[8]吴琨, 邹德宁, 韩英, 等. 304Cu奥氏体不锈钢热变形本构模型[J]. 热加工工艺, 2013, 42(14):15-17.

 

Wu K, Zou D N, Han Y, et al. Constitutive model of 304Cu austenite stainless steel during hot deformation[J]. Hot Working Technology, 2013, 42(14):15-17.

 


[9]刘诚, 董洪波, 张贵华,等. 基于Murty判据的TC4-DT合金加工图及失稳分析[J]. 锻压技术, 2015, 40(1):113-118.

 

Liu C, Dong H B, Zhang G H, et al. Processing drawing and flow instability analysis of TC4-DT titanium alloy based on Murty criterion[J]. Forging & Stamping Technology, 2015, 40(1):113-118.

 


[10]Babu K A, Mandal S, Athreya C N, et al. Hot deformation characteristics and processing map of a phosphorous modified super austenitic stainless steel[J]. Materials & Design, 2017, 115: 262-275. 

 


[11]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.

 


[12]An H E, Wang X, Xie G L, et al. Modified Arrhenius-type constitutive model and artificial neural network-based model for constitutive relationship of 316LN stainless steel during hot deformation[J]. Journal of Iron and Steel Research, 2015, 22(8): 721-729.

 


[13]Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica,1966,14(9):1136-1138.

 


[14]Frost H J, Ashby M F. Deformation-mechanism Maps: The Plasticity and Creep of Metals and Ceramics[M]. Oxford: Pergamon Press, 1982.

 


[15]Ziegler H. Progress in Solid Mechanics[M]. New York:Wiley Press,1963.

 


[16]Prasad Y V R K. Author′s reply: Dynamic materials model: Basis and principles[J]. Metallurgical & Materials Transactions A, 1996, 27(1):235-236.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com