Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Experimental investigation on necking-punching electromagnetic forming for aluminum alloy tube
Authors: Chen Wentao  Yu Haiping  Zhao Peng  Wang Yu 
Unit: Northeast Agricultural University Harbin Institute of Technology Shanghai Aerospace Equipments Manufacturer 
KeyWords:  
ClassificationCode:TG391
year,vol(issue):pagenumber:2018,43(3):52-58
Abstract:
When punch is carried out on the sloping wall of the thin-walled tube, it is difficult to make the axis of punched hole completely perpendicular to the inclined wall, and the surface of part and the punching section are of poor quality. The necking-punching compound electromagnetic forming (EMF) on aluminum alloy tube was studied by experiments, and the forming quality and punching fracture were observed and evaluated. The result shows that the necking-punching compound electromagnetic forming (EMF) process is realized under the compound effect of the inertia from high rate of deformation and die, and the necking deformation under high rate plays decisive role on the punching. Therefore, the tube end necking is realized under the voltage of 9 kV by EMF, and the punching is conducted entirely under the voltage of 15.5 kV. Furthermore, the discharge voltage for tube end necking is obviously lower than that of necking-punching, and the closer to the outer end of the necking zone is, the higher discharge voltage is for the hole punching. Compared with the quasi static tube end necking with steel die and the punching with soft die, the surface quality of necking-punching part through EMF is higher, the fillet region is 40% of initial thickness of the tube wall, the height of burr is about 0.05 mm, and the cross section is almost perpendicular to the busbar of necking zone. The boundary between bright zone and the fracture zone is regular, and the dimple is denser in the fracture zone.
Funds:
国家自然科学基金资助项目(51475122,51675128)
AuthorIntro:
作者简介:陈文韬(1997-),男,本科 E-mail:cwt970228@163.com 通讯作者:于海平(1974-),男,博士,副教授,博士生导师 E-mail:haipingy@hit.edu.cn
Reference:

[1]方春平, 王文平, 龙安林, 等.电磁成形数值模拟技术研究及应用
[J].塑性工程学报, 2016, 23(2): 62-68.

Fang C P, Wang W P, Long A L, et al. Research and application of numerical simulation technology for electromagnetic forming
[J]. Journal of Plasticity Engineering, 2016, 23(2): 62-68.


[2]庞桂兵, 张赟阁, 赵益昕, 等.高速率成形技术进展
[J].大连工业大学大学学报, 2014, 33(5): 381-386.

Pang G B, Zhang Y G, Zhao Y X, et al. Advance in high speed forming technology
[J]. Journal of Dalian Polytechnic University, 2014, 33(5): 381-386.


[3]郝晶. 液压冲孔与翻边复合工艺研究
[D]. 哈尔滨: 哈尔滨工业大学, 2013.

Hao J. Research on Hydropiercing-flanging
[D]. Harbin: Harbin Institute of Technology, 2013.


[4]腾娜, 王强, 蔡冬梅. 内高压成形与液压冲孔技术
[J]. 机械设计, 2008, (8): 90-92.

Teng N, Wang Q, Cai D M. Numerical simulation on hydropiercing process based on internal high pressure forming
[J]. Journal of Machine Design, 2008, (8): 90-92.


[5]Lange K. 25 years of research and development at the institute for forming technology in stuttgart
[J]. Blech Rohre Profile, 1988, 35(10): 803-808.


[6]Tamnane A A, Vohnout V J, Padmanaghan M, et al. Opportunities in the high velocity forming of sheet metal
[J]. Metal Forming, 1997, (1):42-49.


[7]李春峰, 于海平.电磁成形技术理论研究进展
[J].塑性工程学报,2005, 12(5): 1-7.

Li C F,Yu H P. State of the art of study of electromagnetic forming theory
[J]. Journal of Plasticity Engineering,2005, 12(5): 1-7.

[8]苏红亮,黄亮,李建军,等.推进剂贮箱零件侧翻孔电磁成形数值模拟
[J].锻压技术, 2016, 41(12): 53-61.

Su H L, Huang L, Li J J, et al. Numerical simulation on the side hole flanging electromagnetic forming for propellant tank parts
[J]. Forging & Stamping Technology, 2016, 41(12): 53-61.


[9]邹方利,黄尚宇,雷雨,等.整体壁板的电磁局部加载成形
[J].锻压技术, 2016, 41(8): 70-74.

Zou F L, Huang S Y, Lei Y, et al. Local-loading electromagnetic forming of integral pane
[J]. Forging & Stamping Technology, 2016, 41(8): 70-74.


[10]Zhao Q J, Wang C J, Yu H P, et al. Micro bulging of thin T2 copper sheet by electromagnetic forming
[J]. Transactions of Nonferrous Metals Society of China, 2011, 21(31): 461-464.


[11]Iriondo E, Gutierrez M A, Gonzalez B, et al. Electromagnetic impulse calibration of high strength sheet metal structures
[J]. Journal of Materials Process Technology, 2011, 211(5): 909-915.


[12]于海平. 管件电磁缩径失稳判据及变形分析
[D]. 哈尔滨: 哈尔滨工业大学, 2016.

Yu H P. Buckling Criterion and Deformation Analysis of Electromagnetic Tube-compression
[D]. Harbin: Harbin Institute of Technology, 2016.


[13]于海平,徐志丹,李春峰,等.3A21铝合金-20钢管磁脉冲连接实验研究
[J]. 金属学报, 2011, 2(2): 197-202.

Yu H P, Xu Z D, Li C F, et al. Experimental research on magnetic pulse joining of 3A21 aluminum alloy-20 steel tubes
[J]. Acta Metallurgica Scinica, 2011, 2(2): 197-202.


[14]Yu H P, Fan Z S, Li C F. Magnetic pulse cladding of aluminum alloy on mild steel tube
[J]. Journal of Materials Processing Technology, 2014, 214(2): 141-150.


[15]李春峰. 电磁成形
[M]. 北京: 科学出版社, 2016.

Li C F. Electromagnetic Forming
[M]. Beijing: Science Press, 2016.


[16]欧阳伟, 黄尚宇.电磁成形技术的研究与应用
[J].塑性工程学报, 2005, 12(3): 36-38.

Ouyang W, Huang S Y. Research and application of electromagnetic forming
[J]. Journal of Plasticity Engineering,2005,12(3): 36-38.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com