Abstract:
|
In order to realize the prediction of axial straightness error of the connecting rod bushing during the power spinning and improve the performance of connecting rod bushing, RBF neural network model was established based on the MATLAB platform among the thinning ratio, feeding ratio, the first pressure ratio and axis straightness error. Then, it is trained by the simulation data, and straightness error of the inside and outside axis was predicted. Next, comparing the prediction value with simulation value, the prediction error percentage of RBF neural network was obtained, and the prediction performance of the RBF neural network model in the actual production was verified by comparing with the measured values. Furthermore, the prediction error percentage was compared with that of the BP neural network built under the same conditions, and RBF neural network can predict the axial straightness error of the connecting rod bushing during power spinning. Thus, compared with BP neural network, RBF neural network can obtain higher convergence rate, better learning rate, more stable training process and higher prediction accuracy.
|
Funds:
|
山西省自然科学基金资助项目(2012011023-2);山西省高校高新技术产业化项目(20120021);中北大学第十届研究生科技基金项目(20131018)
|
AuthorIntro:
|
作者简介:吉梦雯 (1995-),女,硕士研究生
E-mail:1720205497@qq.com
通讯作者:樊文欣(1964-),男,博士,教授
E-mail:fanwx@nuc.edu.cn
|
Reference:
|
[1] 原霞,王铁,樊文欣,等. 基于Simufact的连杆衬套旋压工艺参数的模拟研究 [J]. 热加工工艺,2013,42(1):63-66. Yuan X, Wang T, Fan W X, et al. Simulation research on spinning parameters of connecting rod bushing based on Simufact [J]. Hot Working Technology, 2013,42 (1): 63-66.
[2] 吕伟,樊文欣,王跃,等.连杆衬套旋压尺寸精度分析 [J].塑性工程学报,2016,23(3):29-33. Lyu W, Fan W X, Wang Y, et al. Analysis of dimensional accuracy of connecting rod bushing spinning. [J] .Journal of Plasticity Engineering,2016,23(3):29-33.
[3] 樊文欣,张涛,宋河金,等. 强力旋压加工的铜合金连杆衬套 [J].车用发动机,1997,(2):32-35. Fan W X, Zhang T, Song H J, et al. The engine with copper alloy rod bushing [J]. Vehicle Engine, 1997, (2):32-35.
[4] 罗亚军,何丹农,张永清,等. 人工神经网络在塑性成形领域中的应用研究 [J]. 锻压技术,2001,26(5):46-49. Luo Y J, He D N, Zhang Y Q, et al. Application of artificial neural networks in the field of plastic forming [J]. Forging & Stamping Technology, 2001, 26(5): 46-49.
[5] 盛仲飙. BP神经网络原理及MATLAB仿真 [J]. 渭南师范学院学报,2008,23(5): 65- 67. Sheng Z B. BP neural network theory and MATLAB simulation [J]. Journal of Weinan Normal University, 2008,23 (5): 65- 67.
[6] 梁大珍,樊文欣,冯志刚,等. 强力旋压连杆衬套的工艺参数优化 [J]. 中国农机化学报,2015,36(3):229-232. Liang D Z, Fan W X, Feng Z G, et al. Optimization of process parameters for power spinning connecting rod [J]. Journal of Chinese Agricultural Mechanization, 2015, 36(3): 229-232.
[7] 吕创能,樊文欣,舒成龙. 基于BP神经网络的锡青铜连杆衬套磨损量预测 [J].河北农机,2016,(1):52-54. Lyu C N, Fan W X, Shu C L. Prediction of wear capacity of tin bronze connecting rod bushing based on BP neural network [J]. Hebei Agricultural Machinery, 2016, (1): 52-54.
[8] 周品.MATLAB神经网络设计与应用 [M]. 北京:清华大学出版社,2013. Zhou P. Design and Application of MATLAB Neural Network [M]. Beijing: Tsinghua University Press, 2013.
[9] 高立,樊文欣,马学军,等. 基于RBF神经网络的强力旋压连杆衬套成形质量预测研究 [J]. 锻压技术,2015,40(9):134-138. Gao L, Fan W X, Ma X J, et al. Study on forming quality prediction of power spinning connecting rod bushing based on RBF neural network [J]. Forging & Stamping Technology, 2015,40 (9): 134-138.
[10] 佘勇,樊文欣,陈东宝,等. 基于RBF神经网络的强力旋压连杆衬套力学性能预测研究 [J]. 锻压技术,2016,41(6):128-132, 145.
|
Service:
|
【This site has not yet opened Download Service】【Add
Favorite】
|
|
|