Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Surface defect detection of stamping parts based on double light pattern matching
Authors: Li Song Zhou Yatong Zhang Zhongwei Chi Yue Han Chunying 
Unit: Hebei University of Technology Beijing Anshizhongdian Technology Co.  Ltd. 
KeyWords: stamping part  surface defects  detection  lighting method  template matching  detection accuracy detection speed 
ClassificationCode:TP391
year,vol(issue):pagenumber:2018,43(11):137-145
Abstract:

For the problems of low manual inspection, high false detection rate and labor intensity in the surface defects of stamping parts, based on double-shot template matching, a surface defect detection method of stamped parts was proposed. According to the different surface defect types, two different lighting patterns, such as a bottom ring light source and a top surface light source, were adopted based on the lighting effect, and the collected stamping parts images were processed by edge extraction, rotation positioning, filling, template matching, and defect extraction. The application of online inspection shows that for the scratching and crescent bump defects, good defect extraction effect is obtained by low-angle ring light source lighting, and for the rust defects, high-angle surface light source lighting method is applied. Therefore, the entire surface defect image processing method can quickly and effectively detect defects such as surface scratches, crescent moon bumps, and rust marks on the stamped parts. Detection accuracy is up to 0.134 mm2, and detection speed is up to 1.196 s. Furthermore, this method can meet the requirements of factory inspection in terms of detection speed and accuracy to greatly increase production efficiency and reduce production costs.

Funds:
河北省引进留学人员资助项目(CL201707);教育部人文社会科学研究规划基金(15YJA630108)
AuthorIntro:
李松(1994-),男,硕士研究生,E-mail:984646263@qq.com;通讯作者:周亚同(1973-),男,博士,教授,博士生导师,E-mail:zyt@hebut.edu.cn
Reference:

[1]张国福,沈洪艳.机器视觉技术在工业检测中的应用综述[J].电子技术与软件工程,2013,(22):111.


Zhang G F, Shen H Y. Application of machine vision technology in industrial inspection[J]. Electronic Technology and Software Engineering, 2013,(22):111.


[2]刘振宇,李中生,冯柏润.机器视觉在工业生产线上的应用实现[J].微型机与应用,2013,32(17):27-30.


Liu Z Y, Li Z S, Feng B R. Realization of machine vision in industrial production line [J].Microcomputers and Its Applications,2013, 32(17):27-30.


[3]Chen Z X, Huang R, Zhang Z S, et al. New compensation method for surface roughness inspection by machine vision in different ambient light[J]. Journal of Southeast University, 2009, 39(1):136-140.


[4]徐信.冲压件表面缺陷图像检测系统的研究与开发[D].广州:广东工业大学,2016.


Xu X. Research and Development of Stamping Surface Defect Image Detection System[D]. Guangzhou: Guangdong University of Technology, 2016.


[5]黄柳青. 基于机器视觉的冲压件缺陷检测系统研究[D].广州:广东工业大学,2012.


Huang L Q. Research on Stamping Parts Defect Detection System Based on Machine Vision[D]. Guangzhou: Guangdong University of Technology,2012.


[6]陈宝文,姜军.基于计算机视觉的冲压件表面缺陷检测方法[J].科技信息,2014,(10):2-3,5.


Chen B W, Jiang J. Surface defect inspection method of stamping parts based on computer vision[J]. Science and Technology Information, 2014,(10): 2-3,5.


[7]陈广峰,管观洋,魏鑫.基于机器视觉的冲压件表面缺陷在线检测研究[J].激光与光电子学进展,2018,55(1):335-341.


Chen G F, Guan G Y, Wei X. Online stamping parts surface defects detection based on machine vision[J]. Laser and Optoelectronics Progress, 2018, 55(1): 335-341.


[8]庞章炯,张鹰,谢佩君,等.机器视觉在晶振外壳缺陷检测中的应用[J].制造技术与机床,2007,(3):87-91.


Pang Z J, Zhang Y, Xie P J, et al. Application of machine vision inspection system for crystal oscillator shell quality detection[J]. Manufacturing Technology and Machine Tool, 2007,(3): 87-91.


[9]陈海永,李泽楠, 孙鹤旭,等. 异形冲压件轮廓视觉检测系统设计[J].光学精密工程,2016,24(10):229-236.


Chen H Y,Li Z N,Sun H X, et al. Visual detection system design for profile of special-shaped stamping parts[J]. Editorial Office of Optics and Precision Engineering, 2016, 24(10):229-236.


[10]Aaron R. Rababaah, Yotan Demi-Ejegi. Automatic visual inspection system for stamped sheet metals (AVIS3M)[J]. IEEE International Conference on Computer Science, 2012, 2(9): 661-665.


[11]Wu X, Gao G. LED light design method for high contrast and uniform illumination imaging in machine vision[J].Applied Optics, 2018, 57(7): 1694.


[12]Dyer S A, He X. Least-squares fitting of data by polynomials[J]. Instrumentation and Measurement Magazine IEEE, 2002, 4(4): 46-51.


[13]张彪,邹哲,陈书界,等.基于仿射变换与Levenberg-Marquardt算法的织物图像配准[J].光学学报,2017,(1):351-359.


Zhang B, Zou Z, Chen S J, et al. Fabric image registration based on affine transformation and Levenberg-Marquardt algorithm[J]. Acta Optica Sinica, 2017,(1): 351-359.


[14]时佳悦,张蕊萍,董海鹰,等. 基于灰度变化率的低对比度CT图像分割研究[J]. 兰州交通大学学报,2017,36(3):57-62.


Shi J Y, Zhang R P, Dong H Y, et al. A defect segmentation algorithm for low contrast CT images based on the change rate of gray level[J]. Journal of Lanzhou Jiaotong University, 2017, 36(3): 57-62.


[15]左敏,曾广平,涂序彦,等.基于等价对的图像连通域标记算法[J].计算机仿真,2011,28(1):14-16.


Zuo M, Zeng G P, Tu X Y, et al. A connected domain labeling algorithm based on equivalence pair in binary image[J]. Computer Simulation, 2011, 28(1):14-16.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com