Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Simulation and prediction of crosssection quality for precut blanking based on BP neural network
Authors: Zhang Liang 
Unit: Department of Electrical and Mechanical Engineering  Jiangyin Polytechnic College 
KeyWords: precut blanking  blanking crosssection quality  BP neural network  orthogonal test  finite element simulation 
ClassificationCode:TG385
year,vol(issue):pagenumber:2018,43(12):175-179
Abstract:

 For stamping part of automobile, the precut blanking process of QSTE460 sheet metal was simulated by finite element software DEFORM2D, and the experimental value of blanking crosssection quality was 0.557 mm by the blanking experiment. Then, the relative error between simulated value and experimental value is 9.72% which verifies the correctness of finite element simulation, and the crosssection quality of precut blanking was simulated and predicted by the precut blanking orthogonal test and BP neural network. Furthermore, the three layer BP neural network structure of 5-12-1 was established by taking the precut depth, blanking clearance, blanking speed, precut blanking clearance and edge radius of punch as the input layer and taking the length of bright band as the output layer. After training and testing of BP neural network, the results show that the maximum relative error between prediction value of BP neural network and simulation value of finite element is 1.44%, which provides a more reliable prediction method for the prediction of blanking crosssection quality.

Funds:
作者简介:张良(1973-),男,硕士,副教授 Email:zlthzl@hotmail.com
AuthorIntro:
Reference:

 参考文献:


 


[1]武万斌,年雪山. 汽车轻量化技术发展趋势
[J]. 汽车工程师,2017,(1):15-17.

 

Wu W B,Nian X S.Development of vehicle lightweight technology
[J].Automotive Engineer,2017,(1):15-17.

 


[2]刘超,王磊,刘杨.汽车用先进高强钢的发展及其在车身设计中的应用
[J].特钢技术,2012,18(2):1-4.

 

Liu C,Wang L,Liu Y.Development of advanced highstrength steel used for automobile and its application in body design
[J].Special Steel Technology,2012,18(2):1-4.

 


[3]郭玉琴,姜虹,王小椿.板料冲压加工数值模拟中接触摩擦问题的研究
[J].机械工程学报,2004,40(11):174-177.

 

Guo Y Q, Jiang H, Wang X C. Research on contact friction in sheet forming numerical simulation
[J].Chinese Journal of Mechanical Engineering,2004,40(11):174-177.

 


[4]苏春建,王朋,王清,等.厚板双侧齿圈压边精冲参数对成形影响规律研究
[J].机械设计与制造,2017,(6):160-163.

 

Su C J,Wang P,Wang Q,et al.The research of fineblanking parameters on the forming of thickplate bilateral gearring blankholder
[J].Machinery Design & Manufacture,2017,(6):160-163.

 


[5]徐晓,王二冬,夏琴香,等.某汽车底梁加固件冲压成形全工序数值模拟分析
[J].现代制造工程,2017,(8):57-62.

 

Xu X,Wang E D,Xia Q X,et al.Numerical simulation analysis of complete stamping process for stiffener part of automotive beam
[J].Modern Manufacturing Engineering,2017,(8):57-62.

 


[6]张慧,沈兴全,王步奎.基于Deform薄板冲裁模具间隙有限元模拟
[J].煤矿机械,2015,36,(1):138-140.

 

Zhang H,Shen X Q,Wang B K.Finite element simulation of die clearance in sheet blanking based on Deform
[J].Coal Mine Machinery,2015,36,(1):138-140.


[7]张余.基于DEFORM的预减振轴套板预切冲裁
[J].锻压技术,2017,42(5):34-37.

 

Zhang Y.Precutting blanking of intermediate disc based on DEFORM
[J].Forging & Stamping Technology,2017,42(5):34-37.

 


[8]王晓莉, 穆瑞, 张咏琴. 基于BP神经网络的薄板成形回弹仿真预测
[J].锻压技术,2016, 41(6):146-149.

 

Wang X L,Mu R,Zhang Y Q.Numerical prediction of springback in sheet metal forming based on BP neural network
[J]. Forging & Stamping Technology,2016,41(6):146-149.

 


[9]黄珍媛,蔡志兴,阮锋,等.高速精密级进冲压中的冲裁断面质量实验研究
[J].塑性工程学报,2009,16(3):9-12.

 

Huang Z Y, Cai Z X, Ruan F, et al.Experiment investigation on blanking fracture surface quality in highspeed & precision progressive stamping
[J].Journal of Plasticity Engineering,2009,16(3):9-12.

 


[10]王静,鲁世红,于长生.基于ANN的冲裁合理间隙的预测研究
[J].机械科学与技术,2006,25(8):891-894.

 

Wang J,Ru S H,Yu C S.Prediction of optimum blanking clearance based on artificial neural networks
[J].Mechanical Science and Technology,2006,25(8):891-894.

 


[11]吴炎林,向华,庄新村,等.基于BP神经网络精冲塌角高度的预测
[J]. 塑性工程学报,2017,24(6):32-37.

 

Wu Y L,Xiang H,Zhuang X C,et al.Prediction of fine blanking dieroll height based on BP artificial neural networks
[J].Journal of Plasticity Engineering,2017,24(6): 32-37.

 


[12]韩茂盛,陶欢.B10铜合金高温流变行为及BP神经网络本构模型
[J].锻压装备与制造技术,2016,51(6):112-115.

 

Han M S,Tao H.High temperature flow stress behavior of B10 copper alloy and BP neural network constitutive model
[J].China Metalforming Equipment & Manufacturing Technology,2016,51(6):112-115.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com