Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Study on characteristics of rolling process for stainless steel composite plate
Authors: Kang Geng Li Yugui Chu Zhibing Ding Zhaoqi Wang Shun 
Unit: Taiyuan University of Science and Technology 
KeyWords: 304 stainless steel  Q235 low carbon steel  composite plate  rolling  constitutive equation  Deform-3D 
ClassificationCode:TG335
year,vol(issue):pagenumber:2019,44(1):34-42
Abstract:

The thermal deformation behaviors of composite plate for 304 stainless steel and Q235 low carbon steel at deformation temperature of 950-1150 ℃ and strain rate of 0.01-0.1 s-1 were studied by thermal simulation test machine Gleeble-3800, and the flow stress equation at high temperature of stainless steel composite plate was established to describe the high temperature flow characteristics. The experimental data show that the flow stress changes significantly with the change of temperature and strain rate, and the greater the strain rate and the lower the deformation temperature are, the greater the flow stress is. Then, the deformation characteristics of hot rolled stainless steel composite plate during the rolling process were simulated by finite element software Deform-3D, and the distribution of stress field, temperature field and rolling force in the thickness direction of the composite plate under different reduction rates were analyzed. The results show that the surface stress of the stainless steel composite plate is the largest and gradually decreases from the surface to the interior, and the temperature near the bonding interface is higher than that in the surface due to the plastic work, heat conduction, heat convection, and so on. Furthermore, the variation trend of the rolling force values measured by the test is consistent with the simulated values, and the error is about 15%. Thus, the simulation results can provide reference for the actual production.

Funds:
国家自然科学基金资助项目(U1710113);国家联合基金重点项目(U1610256);山西省重点研发项目(201703D 111003);山西省重大专项(MC2016-01);中国博士后科学基金项目(2017M622903)
AuthorIntro:
康庚 (1991-),男,硕士研究生,E-mail:congerat@163.com;通讯作者:李玉贵 (1967-),男,博士,教授,E-mail:liyugui2008@163.com
Reference:

[1]Chen Z JNyirenda KChen Q Zet al. The effect of heat treatment technology on mechanical properties of Al/Al alloys multilayer sheet fabricated by hot roll bonding[A].Weiland HRollett A DCassada W A. The 13th International Conference on Aluminum Alloys[C]. John Wiley SonsIncHobokenNJ2012.


[2]马志新,李德富,胡捷,等. 包套轧制复合法制备TA1/LY12 复合板[J].金属成形工艺,200422(1): 34-36.


Ma Z XLi D FHu Jet al.TA1/LY12 plate manufactured by pack rolling clad[J].Metal Forming Technology200422(1): 34-36.


[3]黄庆学,李海斌,周存龙,等.复合板轧制压下率对碳钢组织及相变的影响[J].材料热处理学报,201435(3): 149-153.


Huang Q XLi H BZhou C Let al. Effect of reduction rate on microstructure and transformation behavior of carbon steel by rolling clad plate[J]. Transactions of Materials and Heat Treatment201435(3):149-153.


[4]王光磊,骆宗安,谢广明,等.首道次轧制对复合钢板组织和性能的影响[J].东北大学学报: 自然科学版,2012,33(10): 1431-1435.


Wang G L, Luo Z A, Xie G Met al. Effect of first pass rolling on microstructure and properties of rolling clad steel plate[J].Journal of Northeastern University: Natural Science201233(10): 1431-1435.


[5]熊家强,谢刚,唐广波.304不锈钢热变形过程奥氏体动态再结晶及流变应力研究[J].云南冶金,2008,37(5):37-42.


Xiong J Q, Xie G, Tang G B. Dynamic recrystallization and flow stress of austenite in hot deformation process of 304 stainless steel[J]. Yunnan Metallurgy, 2008,37(5):37-42.


[6]秦芳诚. 环件铸辗复合成形中 Q235B 钢热变形及组织演变研究[D].太原: 太原科技大学,2014.


Qin F C. Study on Hot Deformation and Microstructure Evolution of Q235B Steel in Ring Castingrolling Compound Forming[D]. Taiyuan: Taiyuan University of Science and Technology,2014.


[7]李红斌,田伟,郑明月,等. 基于高速等温压缩试验构建普碳钢考虑温度弹跳的热变形本构方程[J].机械工程材料,2014,38(3):102-108.


Li H B, Tian W, Zheng M Y, et al. Construction of thermal deformation constitutive equation of carbon steel considering temperature bouncing based on highspeed isothermal compression test[J].Mechanical Engineering Materials,2014,38(3):102-108.


[8]宗家富,张文志,许秀梅,等.双金属板热轧复合模拟及最小相对压下量的确定[J].燕山大学学报,200529(1):27-33.


Zong J F, Zhang W Z, Xu X M, et al, Simulation of hot rolling compound and determination of minimum relative reduction of bimetal sheet[J]. Journal of Yanshan University,2005,29(1):27-33.


[9]季晓鹏.多层不锈钢/ (合金) 复合板热轧工艺有限元数值模拟研究[D].西安: 西安建筑科技大学,2008.


Ji X P. FEM Simulation of Hotrolling Process for Multilayer Stainless Steel/Aluminum (Aluminum Alloy) Plates[D]. Xi′an: Xi′an University of Architecture and Technology,2008.


[10]侯英武.不锈钢复合板冷轧过程有限元模拟[D].秦皇岛:燕山大学,2003.


Hou Y W. Finite Element Simulation of Cold Rolling Process of Stainless Steel Composite Plate[D].Qinhuangdao: Yanshan University,2003.


[11]李世芸,张曙红,张代明.双金属复合带材轧制过程有限元模拟[J].中国有色金属学报,200111(6): 1075-1076.


Li S Y, Zhang S H, Zhang D M. Finite element simulation of rolling process of bimetal composite strip[J]. Chinese Journal of Nonferrous Metals,2001,11(6):1075-1076.


[12]王浩. 首道次压下率对不锈钢复合板结合率的影响及微观组织模拟[D].武汉:武汉科技大学,2016.


Wang H, The Effect of First Reduction Ratio on the Interfacial Bonding Rate of Stainless Steel Clad Plate and the Microstructure Simulation[D]. Wuhan: Wuhan University of Science and Technology,2016.


[13]王延溥, 齐克敏. 金属塑性加工学轧制原理[M]. 北京: 冶金工业出版社, 2001.


Wang Y F, Qi K M. Rolling Principle of Metal Plastic Processing[M]. Beijing: Metallurgical Industry Press,2001.


[14]韩万林.双金属轧制力计算方法的研究[J].上海金属,1983,4(1):23-28.


Han W L. Study on the calculation method of rolling force of bimetal[J]. Shanghai Metal,1983,4(1):23-28.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com