Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Heavy-duty forging hydraulic press synchronous control based on secondary controller
Authors: Pei Honglei Liu Gang Zhao Cuiping 
Unit: Wuxi Vocational Institute of Arts & Technology 
KeyWords: heavy-duty forging hydraulic press  synchronous control  secondary controller  Lyapunov direct method  control allocation 
ClassificationCode:TP23
year,vol(issue):pagenumber:2019,44(1):118-122
Abstract:

To improve the synchronous control accuracy of heavy-duty forging hydraulic press, a secondary controller including inner ring pressure controller and outer ring position controller was designed, and a dynamic model of pressure for multi-cylinder single action hydraulic press and a dynamic model of sliding block location were built. For the inner ring pressure controller, the Lyapunov function was configured to calculate the control rate of oil chamber pressure. However, for the outer ring position controller, because the load of hydraulic system was uncertain, the adaptive control system with uncertain load was designed. Through constructing the Lyapunov function of location tracking subsystem, the adaptive control rate was solved, at the same time, the load value was estimated, and the adaptive control rate was transferred into pressure expected value of each oil chamber by controlling allocation method. The simulation verification shows that the designed secondary controller can evaluate the constant uncertain load error-freely and overcome high accuracy leveling within 1 s, and the leveling error is within 1.6×10-5 rad. Besides, the secondary controller can track sliding block location within 1 s, and the location tracking error is within 1.5×10-4 m.

Funds:
江苏省大学生创新创业训练计划项目(201713749001Y)
AuthorIntro:
裴红蕾(1982-),女,硕士,讲师,E-mail:463400135@qq.com
Reference:

[1]于今. 800 MN模锻液压机液压系统设计与同步控制策略研究[D]. 重庆:重庆大学,2016.


Yu J. Research on Design and Synchronous Control of Hydrualic System in 800 MN Forging Hydraulic Press [D]. Chongqing: Chongqing University, 2016.


[2]闫隆, 张洛平, 侯振宇, . 液压机多油缸同步控制关键技术研究[J]. 机械设计与制造, 2014, (6):150-152.


Yan L, Zhang L P, Hou Z Y, et al. Research on essential technology of synchronous control with multicylinder for hydraulic press[J]. Machinery Design & Manufacture, 2014, (6):150-152.


[3]吴爱国, 杨硕, 张涵,. 多缸锻造液压机的调平和跟踪控制[J]. 吉林大学学报:工学版, 2014, 44(4):1051-1056.


Wu A G, Yang S, Zhang H, et al. Leveling and tracking control of multicylinder forging hydraulic press[J]. Journal of Jilin University: Engineering and Technology Edition, 2014, 44(4): 1051-1056.


[4]刘忠伟, 青先麒. 巨型模锻液压机同步系统的模糊PID控制研究[J]. 锻压技术, 2015, 40(4):89-96.


Liu Z WQing X Q. Research on fuzzy PID control for synchronization system of giant die forging hydraulic press [J]. Forging & Stamping Technology, 2015, 40(4):89-96.


[5]汤迎红, 刘忠伟, 青先麒. 巨型模锻液压机同步系统性能影响因素的分析[J]. 锻压技术, 2014, 39(4)77-83.


Tang Y H, Liu Z WQing X Q. Analysis of the factors affecting the performance of the synchronization system for giant forcing hydraulic press [J]. Forging & Stamping Technology, 2014, 39(4): 77-83.


[6]韩金运. 基于模糊滑模算法的四缸等温锻造液压机同步控制方法研究[D]. 合肥:合肥工业大学, 2017.


Han J Y. Research on Synchronous Control Method of Fourcylinder Isothermal Forging Hydraulic Press Based on Fuzzy Sliding Mode Algorithm [D]. Hefei: Hefei University of Technology, 2017.


[7]夏卫明, 嵇宽斌, 杨维民. 液压机高效吨位转换技术[J]. 锻压装备与制造技术, 2017, 52(5):9-11.


Xia W M, Ji K B, Yang W M. High efficiency tonnage conversion technology of hydraulic press [J]. China Metalforming Equipment & Manufacturing Technology, 2017, 52(5):9-11.


[8]杨继东, 车海伟, 刘昆, . 大型模锻压机多液压缸同步控制系统的研究[J]. 机床与液压, 2015, 43(14):85-87.


Yang J D, Che H W, Liu K, et al. Research on large forging presses multicylinder synchronous control system [J]. Machine Tool & Hydraulics, 2015, 43(14):85-87.


[9]Lapin K S. Lyapunov direct method in the analysis of Lagrange instability with respect to part of the variables[J]. Differential Equations, 2013, 49(1):132-135.


[10]于蓉蓉, 魏学业, 吴小进,. 基于李雅普诺夫直接法的自适应预测电流控制算法[J]. 农业工程学报, 2011, 27(8):271-276.


Yu R R, Wei X Y, Wu X J, et al. Selfadaptive predictive current control algorithm based on Lyapunov′s direct method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(8):271-276.


[11]马文飞, 吴孔平. 基于李雅普诺夫稳定性的微电网分析方法[J]. 电测与仪表, 2018, 55(12)27-31.


Ma W F, Wu K P. Analysis method of microgrid based on Lyapunov stability [J]. Electrical Measurement & Instrumentation, 2018, 55(12)27-31.


[12]任锐,马大为,姚建勇,等. 基于动态分配的多缸驱动承载平台的调平控制[J]. 机床与液压,2018,4616):87-91.


Ren R, Ma D W, Yao J Y, et al. Levelling control of multicylinders actuated bearing platforms with dynamic control allocation [J]. Machine Tool & Hydraulics, 2018,4616):87-91.


[13]章鸿翔, 薛雅丽, 王佳辉. 推力矢量飞行器动态控制分配方法研究[J]. 电光与控制, 2016(12):71-76.


Zhang H X, Xue Y L, Wang J H. Research on dynamic control allocation method for aircraft with thrust vector[J]. Electronics Optics Control, 2016(12):71-76.


[14]易坚, 陈勇, 董新民,. 多操纵面飞机交叉耦合鲁棒控制分配策略[J]. 控制与决策, 2017, 32(1):171-175.


Yi J, Chen Y, Dong X M, et al. Robust control allocation with interactions for multiple effectors aircraft[J]. Control and Decision, 2017, 32(1):171-175.


 

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com