Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of pulse current density on tensile mechanical properties of Al-Mg-Si-Cu aluminum alloy for automobile
Authors: Yuan Tao  Zhao Yuewen 
Unit: Taiyuan Institute of Technology 
KeyWords: Al-Mg-Si-Cu aluminum alloy  pulse current  mechanical properties  microstructure  fracture morphology 
ClassificationCode:TG146.2
year,vol(issue):pagenumber:2019,44(1):171-175
Abstract:

For Al-Mg-Si-Cu aluminum alloy used for automobile, its mechanical properties under different pulse current densities (100, 150, 200 A·mm-2) were studied, and the microstructure morphology of sample was obtained by the optical microscope and scanning electron microscopy. The results show that the temperature rises rapidly when the sample is subjected to a single pulse current. When the sample is connected to an auxiliary current, the flow stress also decreases significantly. And the strains after sample fracture under three pulse current densities are 0.246, 0.256 and 0.262, respectively. When the pulse current remains constant, the stress drop will show a linear growth trend with the increasing of strain values. However, with the increasing of pulse current density, the stress drop is more obvious, and many small isometric crystals are generated in the grain boundary region of alloy tissue. Thus, when the pulse current is passed into the sample, the macroscopic fracture of sample will have significant necking phenomenon, the fiber area is significantly enlarged, and many tearing edges are produced.
 

Funds:
山西省自然科学基金资助项目(20140321014-02)
AuthorIntro:
原涛(1971-)男,学士,讲师,E-mail:bengtannuo054101@126.com
Reference:

[1]郭端路,黄江华, 陆辛. Al-Mg-Si系铝合金不同变形条件下的组织力学行为[J].锻压技术,2017,42(5): 141-146.


Guo D L, Huang J H, Lu X. Microstructure and mechanical property of aluminum alloy Al-Mg-Si under different deformation conditions[J]. Forging & Stamping Technology, 2017,42(5): 141-146.


[2]杨治辉,吴耀金,薛勇,等. 循环扩挤平面变形对7A04铝合金组织与性能的影响 [J]. 塑性工程学报, 2017, 24(1): 47-54.


Yang Z H, Wu Y J, Xue Y, et al. Effect of cyclic expansion-extrusion plane deformation on microstructure and mechanical properties of 7A04 aluminum alloy[J]. Journal of Plasticity Engineering, 2017, 24(1): 47-54.


[3]金淳,黄亮,李建军, . 不同热处理状态下成形速率对2219铝合金成形极限的影响[J]. 塑性工程学报,2017, 24(1): 125-132.


Jin C, Huang LLi J J, et al. Influence of forming rate on forming limit of 2219 aluminum alloy under different heat treatment conditions [J]. Journal of Plasticity Engineering, 2017, 24(1):125-132.


[4]付佳,晋会锦,吴素君,.热处理对2A14铝合金组织和性能的影响[J].材料热处理学报,2016,37(1): 189-194.


Fu J, Jin H J, Wu S J, et al. Effect of heat treatment on microstructure and properties of 2A14 aluminum alloy[J]. Transactions of Materials and Heat Treatment, 2016,37(1): 189-194.


[5]刘洲,何玉怀,刘昌奎,.ZL101铝合金的拉伸断裂特征[J].机械工程材料,2014,38(2):82-86.


Liu Z, He Y H, Liu C K, et al. Characteristics of ZL101 aluminum alloy tensile fracture[J]. Materials for Mechanical Engineering, 2014,38(2):82-86.


[6]王雷,李玉龙,索涛,.航空常用铝合金动态拉伸力学性能探究[J].航空材料学报,2013,33(4):71-77.


Wang L, Li Y L, Suo T, et al. Mechanical behavior of commonly used aeronautical aluminum alloys under dynamic tension[J]. Journal of Aeronautical Materials, 2013,33(4):71-77.


[7]丁永根,王薄笑天,李萍,等. 7A60铝合金高压扭转变形微观组织及力学性能分析[J].塑性工程学报,2017,242):149-154.


Ding Y GWang B X TLi Pet al. Analysis on microstructures and mechanical properties of 7A60 aluminum alloy after high pressure torsion[J]. Journal of Plasticity Engineering2017,242):149-154.


[8]付宇明,杜文连,李田,等. 脉冲放电对6061铝合金焊接接头组织及力学性能的影响[J]. 塑性工程学报,2017,244):77-82.


Fu Y MDu W LLi Tet al. Effect of pulse discharge on microstructure and mechanical properties of 6061 aluminum alloy welded joint [J]. Journal of Plasticity Engineering2017,244):77-82.


[9]朱才朝,罗家元,李大峰,.7075铝合金板预拉伸工艺研究[J].机械工程学报,2011,47(24):57-62.


Zhu C C, Luo J Y, Li D F, et al. Numerical simulation and experimental investigation of the aluminum alloy quenching process by considering the flow stress characteristic[J]. Journal of Mechanial Engineering, 2011,47(24):57-62.


[10]张园园,吴运新,李丽敏,.7075铝合金预拉伸板淬火后残余应力的有限元模拟[J].热加工工艺,2008,37(14): 88-91.


Zhang Y Y, Wu Y X, Li L M, et al. Finite element simulation of residual stress in pre-stretching thick-plates of 7075 aluminum alloy after quenching[J]. Hot Working Technology, 2008,37(14): 88-91.


[11]冉广,周敬恩,王永芳.铸造A356铝合金的拉伸性能及其断口分析[J].稀有金属材料与工程,2006,35(10): 1620-1624.


Ran G, Zhou J E, Wang Y F. Study on tensile properties and fractography of cast A356 aluminum alloy[J]. Rare Metal Materials and Engineering, 2006,35(10): 1620-1624.


[12]李敬勇,章明明,李鹰,.预拉伸对铝合金焊接残余应力和变形的影响[J].热加工工艺,2005,34(12):15-17.


Li J Y, Zhang M M, Li Y, et al. Effect of pre-tension on welding residual stresses and distortions of aluminum alloy[J]. Hot Working Technology, 2005,34(12):15-17.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com