Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:High temperature thermal deformation behavior of Cu-Cr-Zr alloy
Authors: Chen Ying  Dang Shu′e  Ma Yuxia  Zhu Xuetong  Huo Xiongbo 
Unit: Taiyuan University of Science and Technology 
KeyWords: Cu-Cr-Zr alloy thermal compression experiment constitutive mode dynamic recrystallization dynamic softening work hardening 
ClassificationCode:TG316
year,vol(issue):pagenumber:2020,45(2):198-202
Abstract:
In order to study the high temperature thermal deformation behavior of Cu-Cr-Zr alloy, the high temperature constitutive model of Cu-Cr-Zr alloy was established,and the thermal compression experiments under different deformation conditions were conducted by Gleeble-1500D thermal simulator. The experimental parameters were the deformation amount of 60%, the strain rate of 0.1-5 s-1, and the deformation temperature of 650-900 ℃. The experiment results show that the work hardening effect is greater than the dynamic softening effect in the initial stage of deformation, so that the stress value increases rapidly to the peak value, then the dynamic softening effect is greater than the work hardening effect, so that the stress value decreases to a certain extent and then stabilizes. By analyzing the variation of stress-strain curve for Cu-Cr-Zr alloy, the low strain rate and the high deformation temperature promote the degree of dynamic recrystallization for alloy. Furthermore, the experimental data is calculated and sorted by calculation software, and the constitutive model of Cu-Cr-Zr alloy is obtained by substituting the linearly fitted value into the Arrhenius constitutive model.
Funds:
山西省科技重大专项(20181101002);山西省重点学科建设经费资助
AuthorIntro:
陈莹(1993-),女,硕士研究生,E-mail: 786398420@qq.com;通讯作者:党淑娥(1965-),女,博士,教授,硕士生导师,E-mail:shuedang@163.com
Reference:
[1]李爱娜,骆仕斌. Cu-Cr-Zr-Ag-P合金的热加工性能[J].金属热处理,2018, 43(6): 222-226.
Li A N, Luo S B. Hot-working performance of Cu-Cr-Zr-Ag-P alloy[J]. Heat Treatment of Metals, 2018, 43(6): 222-226.
[2]李银华,刘平, 贾淑果, 等. 铜合金热变形行为研究[J].金属热处理,2008, 33(8): 29-32.
Li Y H, Liu P, Jia S G, et al. Study on hot defomation behavior of copper alloy[J]. Heat Treatment of Metals, 2008, 33(8): 29-32.
[3]谢水生,李彦利,朱琳.电子工业用引线框架铜合金及组织的研究[J].稀有金属,2003,27(6): 769-776.
Xie S S, Li Y L, Zhu L. Progress of study on lead frame copper alloy and its implementation in electronic industry [J]. Chinese Journal of Rare Metals, 2003, 27(6): 769-776.
[4]赵冬梅,董企铭,刘平.探索高强高导铜合金最佳成分的尝试[J].功能材料,2007,32(6): 609-611.
Zhao D M, Dong Q M, Liu P. Exploring for optimum chemical composition of copper alloy with high strength and electrical conductivity [J]. Journal of Functional Materials, 2007, 32(6): 609-611.
[5]张文芹,郑晨飞.铜及铜合金带材表面质量控制及技术现状[J].有色金属材料与工程,2016, 37(4): 125-131.
Zhang W Q, Zheng C F. Surface quality control and technical actuality of copper and copper alloy strip[J]. Nonferrous Metal Materials and Engineering, 2016, 37(4): 125-131.
[6]张毅,柴哲, 许倩倩,等.Cu-Cr-Zr-Ag合金高温热变形及组织演变[J].材料热处理学报,2015, 36(4): 44-48.
Zhang Y, Chai Z, Xu Q Q, et al. High temperature deformation behavior and microstructure of Cu-Cr-Zr-Ag alloy[J]. Transactions of Materials and Heat Treatment, 2015,36(4):44-48.
[7]王静怡,王庆娟,杜忠泽. 加工工艺对Cu-Cr-Zr合金热变形行为的影响[J].特种铸造及有色合金,2015, 35(6): 666-669.
Wang J Y, Wang Q J. Du Z Z. Effects of processing technology on hot-compressing deformation behavior of Cu-Cr-Zr alloy[J]. Special Casting & Nonferrous Alloys, 2015, 35(6): 666-669.
[8]何霞,张彦敏,宋克兴,等.Cu-0.23Be-0.84Co合金热变形行为[J].塑性工程学报,2015, 22(2): 105-110.
He X, Zhang Y M, Song K X, et al. Study on hot deformation behaviors of Cu-Be-Co alloy[J]. Journal of Plasticity Engineering, 2015, 22(2): 105-110.
[9]Sellars C M, Mctegart W J. On the mechanism of hot deformation [J]. Acta Metallurgica, 1966, 14(9):1136-1138.
[10]Jonas J J, Sellars C M, Mctegart W J. Strength and structure under hot working conditions [J]. International Materials Reviews, 1969, 14(1):1-24.
[11]Zener C, Hollomon J H. Effect of strain rate upon the plastic flow of steel [J]. Journal of Applied Physics, 1944, 15(1):22-23.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com