Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Establishment of twostage constitutive model for SA508Gr.4N nuclear power steel and simulation of final forging for tube sheet
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG316.2
year,vol(issue):pagenumber:2020,45(4):1-13
Abstract:

 Using the real stress-real strain data of the new generation for nuclear power material SA508Gr.4N steel, the two-stage flow stress constitutive model was established based on temperature, strain and strain rate of material. And the related coefficient R and the absolute average relative error AARE were introduced to verify the predictive ability of the constitutive model, which were found to be 0.9916 and 5.07%, respectively. Adopting the constitutive model for secondary development, subprograms based on Fortran language were written and embedded in DEFORM software. Combined with measured thermal property parameters such as thermal conductivity and specific heat capacity of SA508Gr.4N steel which changed with temperature, the key final forging of heavy forgings for tube sheet of nuclear power key parts were simulated systematically, including the three sub-processes: the flat hammer head widening, the flattening boss and the rotary compaction. The temperature field, the stress field, the equivalent strain field and the final forming performance of forgings under different process parameters during the hot forging process were analyzed. Finally, a reasonable forging process schem is obtained.

Funds:
广东省自然科学基金团队资助项目(2015A030312003)
AuthorIntro:
曾志钦(1994-),男,硕士研究生 E-mail:mezqzeng@scut.edu.cn 通讯作者:张卫文(1969-),男,博士,教授 E-mail:mewzhang@scut.edu.cn
Reference:

 [1]Lee K H, Kim M C, Lee B S, et al. Analysis of the master curve approach on the fracture toughness properties of SA508Gr.4N NiMoCr low alloy steels for reactor pressure vessels[J]. Materials Science & Engineering:A, 2010,527(15):3329-3334.


[2]Kim M C, Park S G, Lee K H, et al. Comparison of fracture properties in SA508Gr.3 and Gr.4N high strength low alloy steels for advanced pressure vessel materials[J]. International Journal of Pressure Vessels and Piping, 2015,131:60-66.

[3]Park S G, Lee K H, Min K D, et al. Influence of the thermodynamic parameters on the temper embrittlement of SA508Gr.4N NiCrMo low alloy steel with variation of Ni, Cr and Mn contents[J]. Journal of Nuclear Materials, 2012, 426(1-3):1-8.

[4]何西扣, 刘正东, 杨志强, 等. 核压力容器用SA5084N钢的奥氏体晶粒长大行为[J]. 金属热处理,2016, 41(6):4-7.

He X K, Liu Z D, Yang Z Q, et al. Austenite grain growth behavior of SA5084N steel for nuclear pressure vessel[J]. Heat Treatment of Metals, 2016, 41(6):4-7.

[5]刘宁, 刘正东, 何西扣, 等. 核压力容器用SA508Gr.4N钢加热过程中的奥氏体相变[J]. 金属热处理, 2017,42(3): 88-92.

Liu N, Liu Z D, He X K, et al. Austenite transformation during heating of SA508Gr.4N steel for nuclear pressure vessel[J]. Heat Treatment of Metals, 2017, 42(3): 88-92.

[6]杨志强, 刘正东, 何西扣,等. SA508Gr.4N钢的亚动态再结晶行为[J]. 金属热处理,2018, 43(1): 6-11.

Yang Z Q, Liu Z D, He X K, et al. Subdynamic recrystallization behavior of SA508Gr.4N steel[J]. Heat Treatment of Metals, 2018, 43(1): 6-11.

[7]杨志强, 刘正东, 何西扣, 等. 反应堆压力容器用SA508Gr.4N钢的热变形行为[J]. 材料工程, 2017, 8:88-95.

Yang Z Q, Liu Z D, He X K, et al. Thermal deformation behavior of SA508Gr.4N steel for reactor pressure vessels[J]. Journal of Materials Engineering, 2017, 8: 88-95.

[8]刘正东. 新一代核压力容器用SA508Gr.4N钢 [M].北京:冶金工业出版社,2018. 

Liu Z D. SA508Gr.4N Steel for A New Generation of Nuclear Pressure Vessels [M]. Beijing: Metallurgical Industry Press, 2018.

[9]Laasraoui A, Jonas J J. Prediction of steel flow stresses at high temperatures and strain rates[J]. Metallurgical Transactions A:Physical Metallurgy and Materials, Science, 1991, 22(7):1545-1558.

[10]Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel[J]. Journal of Applied Physics, 1944, 15(1): 22-32.

[11]Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica, 1966, 14(9):1136-1138.

[12]王熠昕. 大型核电封头用钢20MnNiMo热塑性变形行为的研究及应用[D]. 重庆:重庆大学, 2012.

Wang Y X. Research and Application of Thermoplastic Deformation Behavior of 20MnNiMo Steel for Large Nuclear Power Head [D]. Chongqing: Chongqing University, 2012.

[13]王梦寒, 王根田, 岳宗敏, 等. 20MnNiMo钢热变形行为及基于物象的本构模型[J]. 上海交通大学学报, 2016,50(7):1041-1046.

Wang M H, Wang G T, Yue Z M, et al. Hot deformation behavior of 20MnNiMo steel and constitutive model based on object[J]. Journal of Shanghai Jiaotong University, 2016,50(7): 1041-1046.

[14]Poliak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation[J]. ISIJ International, 2003,44(5): 8-14.

[15]柏阳, 吴玉程, 罗志勇, 等. 基于Arrhenius方程和BP神经网络的2024Al/Al18B4O33w复合材料热变形流变应力预测[J]. 锻压技术, 2019,44(8):168-176.

Bo Y, Wu Y C, Luo Z Y, et al. Prediction on hot deformation flow stress of 2024Al/Al18B4O33w composites based on Arrhenius equation and BP neural network [J]. Forging & Stamping Technology, 2019,44 (8): 168-176.

[16]薛永栋, 胡振志, 陈明. 特大型管板锻造工艺技术研究[J]. 热加工工艺, 2018,47(15):153-156.

Xue Y D, Hu Z Z, Chen M. Research on forging process technology of extra large tube sheets[J]. Hot Working Technology, 2018,47(15):153-156.

[17]Liu X R, Zhou X D. The forging penetration efficiency of C45 steel stepped shaft radial forging with GFM forging machine[J]. Advanced Materials Research, 2010, 154-155:593-596.

[18]栾谦聪, 董湘怀, 吴云剑. 基于经验法则的锻透深度计算公式推导与验证[J]. 模具技术, 2013, (3):1-6.

Luan Q C, Dong X H, Wu Y J. Derivation and verification of forging depth calculation formula based on empirical rule[J]. Mold Technology, 2013, (3):1-6.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com