Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Analysis on mechanical and hydrogen embrittleness properties of annealled Fe-24Mn-4Cr-0.5C high manganese steel for vehicle
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG142
year,vol(issue):pagenumber:2020,45(4):184-188
Abstract:

The mechanical characteristics of Fe-24Mn-4Cr-0.5C high manganese steel were measured by using the method of on-line hydrogen charging, the microstructure morphologies of Fe-24Mn-4Cr-0.5C high-manganese steel were observed under the different deformation degrees, and the mechanical characteristics and hydrogen embrittleness sensitivity of the steel samples were analyzed. The results show that the annealed microstructure of high manganese steel is composed of single-phase austenite with equiaxial distribution, and the grain size is lower when the annealing temperature rises. The annealed high manganese steel samples show continuous yield and strong plasticization characteristics, and the strength of the samples decreases when the annealing temperature rises. Compared with the non-hydrogen sample, the uniformity of the tissue for high manganese steel after hydrogen charging is significantly improved, and the strength and plasticity of sample decrease significantly. The samples obtained after 900 ℃ annealing reach the maximum strong plasticization, while the slow strain rate testing test of the samples in the hydrogen state significantly reduce the strong plasticization. When the annealing temperature increases, the high manganese steel will be more susceptible to hydrogen embrittlement. 

Funds:
重庆市基础科研应用开发计划项目(164391)
AuthorIntro:
夏源(1986-),女,硕士,讲师 E-mail:shikeduanqiao@126.com
Reference:

 [1]Lee S I, Lee S Y, Han J, et al. Deformation behavior and tensile properties of an austenitic Fe-24Mn-4Cr-0.5C high-manganese steel: Effect of grain size[J]. Materials Science and Engineering: A, 2019, 742: 334-343.


[2]李伟,王凯.冷轧压下量对汽车轻量化用高锰钢高温退火组织的影响[J].锻压技术,2019,44(11):164-169.

Li W, Wang K. Effect of cold rolling reduction on high-temperature annealing structure of high manganese steel for automotive lightweight [J]. Forging & Stamping Technology,2019,44(11):164-169.

[3]Sevsek S, Brasche F, Haase C, et al. Combined deformation twinning and short-range ordering causes serrated flow in high-manganese steels[J]. Materials Science and Engineering: A, 2019, 746: 434-442.

[4]Jabońska M B, Kowalczyk K. Microstructural aspects of energy absorption of high manganese steels[J]. Procedia Manufacturing, 2019, 27: 91-97.

[5]苏冬雪,崔宇琳,王满富.合金化处理对高碳高锰钢组织与性能的影响[J].大连交通大学学报,2018,39(6):82-87.

Su D X, Cui Y L, Wang M F. Effect of alloying treatment on microstructure and properties of high-carbon high-manganese steel [J]. Journal of Dalian Jiaotong University, 2008,39(6):82-87.

[6]方晓汾,王静霞.汽车轻量化用冷轧Fe-17Mn-0.05C高锰钢拉伸性能和氢脆断裂分析[J].锻压技术,2019,44(1):157-161.

Fang X F, Wang J X. Analysis of tensile properties and hydrogen embrittlement fracture of Fe-17Mn-0.05C high manganese steel for automotive lightweight rolling [J]. Forging & Stamping Technology,2019,44(1):157-161.

[7]董彦录.60 kg/m钢轨41号高速单开道岔高锰钢整铸翼轨研制[J].铸造技术,2019,40(1):60-63.

Dong Y L. Development of high speed single switch high manganese steel casting wing rail with 60 kg/m rail 41 [J]. Casting Technology,2019,40(1):60-63.

[8]庞晓琛.热处理工艺对合金化高锰钢组织及性能的影响[J].热加工工艺,2019,48(2):224-226.

Pang X C. Effects of heat treatment process on microstructure and properties of alloyed high manganese steel [J]. Thermal Processing Technology,2019,48(2):224-226.

[9]王讯.高锰钢构件激光熔覆强化与延寿技术成果鉴定会在京举行[J].表面工程与再制造,2018,18(6):60-68.

Wang X. Evaluation meeting on laser cladding strengthening and life extension technology of high manganese steel components held in Beijing [J]. Surface Engineering and Remanufacturing, 2018,18(6):60-68.

[10]龚俊,张航.高锰钢辙叉在机械冲击下的预硬化特性[J].兰州理工大学学报,2019,45(1):6-10.

Gong J, Zhang H. Prehardening properties of frog of high manganese steel under mechanical impact [J]. Journal of Lanzhou University of Technology,2019,45(1):6-10.

[11]汪敏.简析高锰钢小方坯冶炼连铸工艺优化[J].中国金属通报,2018,36(11):77,79.

Wang M. Optimization of continuous casting process for small billet smelting of high manganese steel [J]. China Metals Bulletin,2018,36(11):77,79.

[12]Sudipta P, Saleh A A, Pereloma E V, et al. Effect of isochronal annealing on the microstructure, texture and mechanical properties of a cold-rolled high manganese steel[J]. Materials Characterization, 2018, 144(126):66-76.

[13]He S, Li Z, Chen Z, et al. Review of mold fluxes for continuous casting of high-alloy (Al, Mn, Ti) steels[J]. Steel Research International, 2019, 90(1): 1-10.

[14]韩丽辉,林林,李牧明.高锰钢中氧含量测定方法研究[J].实验技术与管理,2018,35(11):42-47,53.

Han L H, Lin L, Li M M. Study on determination of oxygen content in high manganese steel [J]. Experimental Technology and Management, 2008,35(11):42-47,53.

[15]赵海燕,张恒.0.9C-9Mn-2Cr-Mo中锰耐磨钢的冲击滚动复合磨损性能[J].特殊钢,2018,39(6):47-50.

Zhao H Y, Zhang H. Impact rolling composite wear properties of 0.9C-9Mn-2Cr-Mo manganese wear-resistant steel [J]. Special Steel, 2008,39(6):47-50.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com