Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Simulation and experimental research on hot compression process for Mn18Cr18N ESR steel
Authors: Tian Jihong  Zhang Xuerui  Qin Fengming  Liu Jiansheng  Chen Huiqin 
Unit: Taiyuan University of Science and Technology Tianjin Heavy Equipment Engineering Research Limited Company 
KeyWords: Mn18Cr18N ESR steel  hot compression process  process route  microstructure  mechanical properties 
ClassificationCode:TG306
year,vol(issue):pagenumber:2020,45(5):185-191
Abstract:
Microstructure evolution and its influence on mechanical properties during the single-pass and multi-pass hot compression processes of Mn18Cr18N high nitrogen austenitic stainless steel were investigated by numerical simulation and experimental methods. The results show that internal microstructures and mechanical properties obtained by different process routes under the total reduction rate of 60% are obviously different. For the single-pass and large deformation process, the fined recrystallized grain microstructure is obtained in the large deformation area, and a small amount of high-temperature ferrite disperses on the original grain boundaries with short rod shape, which has better comprehensive performance. However, for the small deformation process with equal reduction of multiple passes in a short time with the pass interval time of 5 s, the recrystallized grains are smaller, the recrystallization volume fraction is lower, the unevenness of deformation and microstructure is significant, and the high-temperature ferrite is distributed intermittently on the original grain boundaries with strip shape, which causes high strength and poor plasticity. Furthermore, for the small deformation process with equal reduction of multiple passes at holding temperature of 1100 ℃ between passes and extended pass interval time of 5 min, the fine and uniform recrystallized grain structure is obtained on the whole section of billet, and a very small amount of high-temperature ferrite disperses on the grain boundaries with particle shape, which has high strength and better plasticity.
Funds:
国家自然科学基金资助项目(51575372)
AuthorIntro:
田继红(1971-),男,博士研究生,副教授,E-mail:tykdtjh@126.com;通讯作者:陈慧琴(1968-),女,博士,教授,E-mail:chenhuiqin@tyust.edu.cn
Reference:
[1]Chen H Q, Wang Z X,Qin F M,et al. Hot deformation behavior and processing maps of ascast Mn18Cr18N steel[J]. Journal of Wuhan University of Technology: Mater. Sci. Ed.,2017,32(4):935-943.
[2]傅杰. 第二代电渣冶金技术与重大装备制造[J].材料与冶金学报, 2011, 10 (Z1):8-13.
Fu J. The second generation of electroslag metallurgy technology and major equipment manufacturing[J]. Journal of Materials and Metallurgy,2011, 10 (Z1):8-13.
[3]陈旭. 电渣重熔空心钢锭过程的数学模拟和试验研究[D].沈阳:东北大学, 2016.
Chen X. Mathematical Simulation and Experimental Research on ElectroslagRemelting Process of Hollow Ingot[D]. Shenyang:Northeastern University, 2016.
[4]Jang Y S,Ko D C, Kim B M. Application of the finite element method to predict microstructure evolution in the hot forging of steel[J]. Journal of Materials Processing Technology, 2000, 101(1-3):85-94.
[5]Sinczak J,Skubisz P, Pietrzyk M, et al. Analysis of microstructure evolution in the forging process of a windmill main shaft[J]. Steel Research International, 2006, 77(8):583-589.
[6]Du F S, Wang M T, Li X T. Research on deformation and microstructure evolution during forging of largescale parts[J]. Journal of Materials Processing Technology, 2007, 187-188:591-594.
[7]马秋,林忠钦,于忠奇.IN718合金多步锻造过程中微观组织演变数值模拟[J].上海交通大学学报, 2007,41 (4):629-633.
Ma Q, Lin Z Q, Yu Z Q. A numerical simulation ofmicrostructure evolution of IN718 alloy during multistep forging[J]. Journal of Shanghai Jiaotong University[J]. 2007,41 (4):629-633.
[8]Cho J R, Jeong H S, Cha D J, et al. Prediction of microstructural evolution and recrystallization behaviors of a hot working die steel by FEM[J]. Journal of Materials Processing Technology, 2005, 160(1):1-8.
[9]陈慧琴,刘建生, 郭会光. Mn18Cr18N钢热成形晶粒变化的模拟研究[J]. 金属学报, 1999,35(1):53-56.
Chen H Q, Liu J S, Guo H G. Simulation of microstructure evolution during hot forming of Mn18Cr18N retaining ring steel[J]. Acta Metallurgica Sinica, 1999,35(1):53-56.
[10]王振兴. 电渣重熔Mn18Cr18N奥氏体不锈钢热变形过程组织演变的研究[D].太原:太原科技大学,2017.
Wang Z X. Research on Microstructure Evolution of ESR Mn18Cr18N Austenitic Stainless Steel during Hot Deformation[D]. Taiyuan:Taiyuan University of Science and Technology, 2017.
[11]解婧陶,王钦娟,王璐银.奥氏体不锈钢321合金不同应变速率下动态再结晶分析[J].锻压技术,2019,44(6):178-182.
Xie J T,Wang Q J,Wang L Y. Dynamic recrystallization analysis on austenitic stainless steel 321 alloy atdifferent strain rates[J].Forging & Stamping Technology,2019,44(6):178-182.
[12]李景丹,刘建生,焦永星. 316LN钢亚动态再结晶行为[J].锻压技术,2019,44(8):176-181.
Li J D, Liu J S, Jiao Y X. Metadynamic recrystallization behavior of 316LN steel[J].Forging & Stamping Technology,2019,44(8):176-181
[13]Martin C M, Eric R N, Elliot L B, et al. Hot working and recrystallization of ascast 316L[J]. Metallurgical and Materials Transactions A, 2003, 34: 1683-1703.
[14]Martin C M, Eric R N, Elliot L B, et al. Hot working and recrystallization of ascast 317L[J]. Metallurgical and Materials Transactions A, 2003, 34: 3021-3041.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com