Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of inclination angel for unilateral axis on forming precision of taper panel with small taper
Authors: Hu Deyou Li Jiguang Zhu Yarong Zhang Xialu Wang Wei Du Baihong Zhang Guowei Chen Fenghe 
Unit: Tianjin Long March Launch Vehicle Manufacturing Co. Ltd. Capital Aerospace Machinery Co. Ltd. 
KeyWords: small taper  taper panel  forming precision  inclination angel  clamping gap 
ClassificationCode:TG386
year,vol(issue):pagenumber:2020,45(6):59-63
Abstract:

For the control of forming precision for 2219 aluminum alloy taper panel with small taper, the relationship between profile and inclination angel of unilateral axis for 2219 aluminum alloy taper panel with small taper was established by combining the structural characteristics of four-axis bending machine and product precision requirements to calculate the difference in height between two cylinders of unilateral axis theoretically, and the influence law on the forming precision of the taper panel with small taper was explored by studying the process parameters with different inclination angles of unilateral axis. The results show that the bending radiuses of the small end preferentially reaches due to the extrusion of the cone device when the difference in height between the two cylinders of the unilateral axis is large and they are under the same conditions, and when the difference in height between the two cylinders of the unilateral axis is reduced, the bending radii of the large and small ends are controlled by changing deformation trend and increasing the plastic deformation ratio of the large end. Thus, when the clamping gap between the upper and lower shafts is 20 mm, the distance of cylinder 1 is 250 mm and the distance of cylinder 2 is 300 mm, and the forming precision of taper panel with small taper is controlled within 1.5 mm to meet the requirements of radial gap and straightness.

Funds:
天津市科技支撑项目(17YFZCGX00530)
AuthorIntro:
胡德友(1988-),男,硕士,工程师 E-mail:hudeyou1988@126.com
Reference:


[1]刘劲松, 张士宏, 曾元松,等. 网格式整体壁板增量成形有限元模拟
[J] . 材料科学与工艺,2004,12(5): 515-517.


Liu J S,Zhang S H,Zeng Y S,et al. Simulation of incremental forming on integral panel skin with grid-type ribs
[J]. Materials Science & Technology,2004,12(5):515-517.



[2]曾元松, 黄遐. 大型整体壁板成形技术
[J] . 航空学报,2008,29(3):721-727.


Zeng Y S, Huang X. Forming technologies of large integral panel
[J] . Acta Aeronautica et Astronautica Sinica, 2008,29(3):721-727.



[3]Wang T, Platts M J, Wu J. The optimisation of shot peen forming processes
[J]. Journal of Materials Processing Technology, 2008,206(1-3):78-82.



[4]于登云, 赖松柏,陈同祥.大型空间站整体壁板结构技术进展
[J].中国空间科学技术,2011,31(5):31-40.


Yu D Y,Lai S B,Chen T X.Review on integral stiffened shell structure technology of large space station
[J]. Chinese Space Science and Technology,2011,31(5):31-40.



[5]韩志仁, 戴良景,张凌云. 飞机大型蒙皮和壁板制造技术现状综述
[J]. 航空制造技术,2009,1(4):64-66.


Han Z R, Dai L J, Zhang L Y. Current status of large aircraft skin and panel manufacturing technologies
[J]. Aeronautical Manufacturing Technology,2009,1(4):64-66.



[6]赖松柏, 陈同祥,于登云.整体壁板填料辅助滚弯成形的动力显式分析方法
[J]. 航天器工程,2012,21(3):41-47.


Lai S B,Chen T X,Yu D Y.Dynamic explicit analysis method for roll bending forming of integrally stiffened panel with rubber filler
[J].Spacecraft Engineering,2012,21(3):41-47.



[7]黎俊初, 肖丽,刘大海.7050铝合金蠕变时效成形回弹规律与力学性能研究
[J].热加工工艺,2014,43(19):14-18.


Li J C,Xiao L, Liu D H. Study on springback and mechanical properties of 7050 aluminum alloy during creep age forming
[J]. Hot Working Technology,2014,43(19):14-18.



[8]邓莉萍, 鲁世强,汤斌兵. Nb-Cr-Mo合金蠕变行为研究
[J]. 稀有金属, 2019, 43(6):598-603.


Deng L P, Lu S Q, Tang B B. High temperature creep behavior of Nb-Cr-Mo alloy
[J]. Chinese Journal of Rare Metals,2019,43(6):598-603.



[9]龚乾江, 杨明,梁益龙, 等. 211Z-X新型高强韧铝合金热成形及动态再结晶行为研究
[J]. 稀有金属,2018,42(1):36-44.


Gong Q J, Yang M, Liang Y L, et al. Hot formability and dynamic recrystallization behavior of new high performance aluminum alloy 211Z-X
[J]. Chinese Journal of Rare Metals,2018,42(1):36-44.



[10]常荣福. 飞机钣金零件制造技术
[M].北京:国防工业出版社, 1992.


Chang R F. Sheet Metal Forming Technology
[M].Beijing: National Defense Industry Press, 1992.



[11]仉志强, 宋建丽, 付建华, 等. 中厚板三辊弹塑性压弯建模与试验
[J]. 塑性工程学报,2013,20(5): 102-106.


Zhang Z Q, Song J L, Fu J H, et al. Modelling and testing for three-roller elastic-plastic bending of moderate-thick plate
[J]. Journal of Plasticity Engineering, 2013, 20(5): 102-106.



[12]Gandhi A H, Shaikh A A, Raval H K. Formulation of springback and machine setting parameters for multi-pass three-roller cone frustum bending with change of flexural modulus
[J]. International Journal of Material Forming, 2009,2(1):45-57.



[13]Gandhi A H, Raval H K. Analytical and empirical modeling of top roller position for three-roller cylindrical bending of plates and its experimental verification
[J]. Journal of Materials Processing Technology, 2008,197(1-3): 268-278.



[14]Frank V. Extrusion channel and extrusion bending: A review
[J]. Journal of Materials Processing Technology,1999,87(1-3):1-27.



[15]余同希. 塑性弯曲理论及其应用
[M]. 北京: 科学出版社,1992.


Yu T X.Plastic Bending Theory and Its Application
[M]. Beijing: Science Press,1992.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com