Abstract:
|
In order to explore the feasibility of aluminum alloy hemming process based on electromagnetic forming (EMF), the electromagnetic force distribution, the magnetic induction strength and the bending deformation law of 6014-T4 aluminum alloy sheet under different flanging lengths, different magnetic pulse discharge voltages and different distances between coil and sheet were studied by numerical simulation, and the accuracy of the numerical simulation results were verified by experiments. The study results show that the longer the flanging length is, the greater the magnetic pulse discharge voltage is, the shorter the distance between coil and sheet is, the greater the magnetic pulse driving force obtained by the aluminum sheet is, and the greater the bending deformation of aluminum sheet is. When the magnetic pulse discharge voltage is lower than 2 kV, the pre-hemming angle of aluminum sheet is insufficient, and while the magnetic pulse discharge voltage is too high, the aluminum sheet collides with the pre-hemming punch to cause springback. Thus, it is indicates that the energy of electromagnetic pulse discharge must match the angle of pre-hemming punch.
|
Funds:
|
国家科技重大专项(2018ZX04044-001)
|
AuthorIntro:
|
张润凯(1993-),男,硕士研究生,E-mail:rkzhang2017@163.com;通讯作者:朱卫东 (1968-),男,硕士,研究员,E-mail:903521354@qq.com
|
Reference:
|
[1]Hirsch J. Recent development in aluminum for automotive applications [J]. Transactions of Nonferrous Metals Society of China, 2014, 24 (7): 1995-2002. [2]Li Y B, Ma Y W, Lou M, et al. Advances in welding and joining processes of multi-material lightweight car body [J]. Journal of Mechanical Engineering, 2016, 52 (24): 1-23. [3]聂辉, 王娜. 汽车车身包边工艺及表面质量分析[J]. 模具制造, 2013, 13(8):9-12. Nie H, Wang N. Package edge technology and surface quality analysis for the automobile body[J]. Die & Mould Manufacture, 2013, 13(8):9-12. [4]梁福金. 浅谈汽车覆盖件包边型式[J]. 装备制造技术, 2016,(12):80-82. Liang F J. A type of automobile cover wrapping[J]. Equipment Manufacturing Technology, 2016,(12):80-82. [5]Ming Dao, Ming Lie. A micromechanics study on strain-localization-induced fracture initiation in bending using crystal plasticity models[J]. Philosophical Magazine A, 2001, 81(8):1997-2020. [6]Psyk V, Risch D, Kinsey B L, et al. Electromagnetic forming-A review [J]. Journal of Materials Processing Technology, 2011, 211 (5): 787-829. [7]傅爱杰,付应乾,罗震宇,等. 铝合金薄壁柱壳电磁胀形塑性失稳实验研究[J].塑性工程学报,2018,28(1):85-91. Fu A J, Fu Y Q, Luo Z Y, et al. Experimental study on plastic instability of electromagnetic bulging for thin-walled aluminum alloy cylinder [J]. Journal of Plasticity Engineering, 2018, 25 (1): 85-91. [8]Senthilnathan N, Venkatachalam G, Nilesh N S. A two stage finite element analysis of electromagnetic forming of perforated aluminum sheet metals [J]. Procedia Engineering, 2014, 97: 1135-1144. [9]Cui X H, Li J J, Mo J H, et al. Investigation of large sheet deformation process in electromagnetic incremental forming[J]. Materials & Design, 2015, 76: 86-96. [10]Jimbert P, Eguia I, Perez I, et al. Analysis and comparative study of factors affecting quality in the hemming of 6016T4AA performed by means of electromagnetic forming and process characterization[J]. Journal of Materials Processing Technology, 2011, 211: 916-924. [11] Maxwell J C. A Treatise of Electricity and Magnetism[M]. Oxford: Macmillan and Co. Publishers to the University of Oxford, 1873. [12] Golovashchenko S. Sharp flanging and flat hemming of aluminum exterior body panels[J]. Journal of Materials Engineering and Performance, 2005, 14: 508-515. [13] Cao Q L, Han X T, Lai Z P, et al. Analysis and reduction of coil temperature rise in electromagnetic forming[J]. Journal of Materials Processing Technology, 2015, 225(2): 185-194. [14] Zhang G H, Hao H Q, Wu X, et al. An experimental investigation of curved surface-straight edge hemming[J]. Journal of Manufacturing Processes, 2000, 2(4): 241-246. [15] Eplattenier P L, Cook G, Ashcraft C, et al. Introduction of an electromagnetic module in LS-DYNA for coupled mechanical thermal electromagnetic simulations[A]. Proceedings of 3rd International Conference on High Speed Forming[C]. Dortmund: Technical University Dortmund, 2008. [16]Mamalis A G, Manolakos D E, Kladas A G, et al. Electromagnetic forming and powder processing: Trends and developments[J]. Applied Mechanics Reviews, 2004, 57(4): 299-324. [17]Batygin Y V, Golovashchenko S F, Gnatov A V. Pulsed electromagnetic attraction of nonmagnetic sheet metals[J]. Journal of Materials Processing Technology, 2014, 214: 390-401.
|
Service:
|
【This site has not yet opened Download Service】【Add
Favorite】
|
|
|