Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Design principle and application of forging grinding ball mold with square steel
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG316.3
year,vol(issue):pagenumber:2020,45(10):142-150
Abstract:

 For the grinding ball forging process with square steel blank, the characteristics of forgings and the design principles of mold cavity in the two processes of forging round bar and forging ball were explained. In the process of forging round bar, the process characteristics of forging round bar, the material flow law, the shape characteristics of forgings and the equivalent stress distribution and failure position of mold were analyzed. Then, two key design principles of mold cavity for forging round bar were summarized by comparing the forging shapes of normal circular cavity and ellipsoidal cavity, and the corresponding size range of mold cavity was given. Furthermore, in the process of forging ball with round bar, the process characteristics, the material flow law, the forging shape characteristics and the equivalent stress distribution and failure position of mold were analyzed, two key design principles of mold cavity for forging ball were summarized, and the design scope of mold cavity size for forging ball was given. In addition, the principle that the cross section and volume of special-shaped blank must be matched with the corresponding mold cavity sizes was emphasized, and the forging states that the forging sizes did not match with the cavity were enumerated. Finally, some problems that need to be paid attention to in the use of mold and blank were added, and the principle of mold design was applied to manual operation and automatic production line.

 
Funds:
先进成形与焊接共性关键技术创新能力平台建设(2018ZX04044001)
AuthorIntro:
闫红艳(1979-),女,硕士,高工 E-mail:yanhongyan2013@126.com
Reference:

 
[1]郎洪明. 磨球的生产和选用现状及发展趋势
[J].热加工工艺,2010,39(15):74-76,82.


Lang H M. Development trend of manufacture and selection of milling ball
[J]. Hot Working Technology,2010, 39(15):74-76,82.


[2]马清双. 大直径耐磨钢球锻轧成形工艺的研究
[D].长春:吉林大学,2019.

Ma S Q. Research on Forging and Rolling Combined Process of Large Diameter Wearresistant Steel Balls
[D]. Changchun: Jilin University.2019.


[3]蒲以松, 王宝奇,宋孟超,等.大直径锻造钢磨球的淬透性
[J].材料热处理学报,2018,39(8):102-107.

Pu Y S,Wang B Q,Song M C, et al. Hardenability of large diameter forged steel grinding balls
[J].Transactions of Materials and Heat Treatment,2018,39(8):102-107.


[4]杨鹏雨. 高性能大直径锻造磨球的研制
[D]. 南昌:南昌航空大学,2016.

Yang P Y. Development of High Performance and Large Diameter Forging Grinding Ball
[D]. Nanchang: Nanchang Hangkong University, 2016.


[5]周伟, 艾云龙,王家宣,等.65Mn锻造磨球开裂分析
[J].失效分析与预防,2015,10(5):295-300.

Zhou W, Ai Y L, Wang J X, et al. Failure analysis on cracking of 65Mn forging grindingball
[J]. Failure Analysis and Prevention, 2015,10(5):295-300.


[6]陈建超. 高温形变对磨球用钢组织性能的影响
[D].天津:河北工业大学,2015.

Chen J C. The Effect of High Temperature Deformation on Microstructure and Performance of Grinding Ball Steel
[D]. Tianjin: Hebei University of Technonlogy,2015.


[7]许兴军, 徐胜.大直径锻造矿用耐磨钢球的研制
[J].金属热处理,2013,38(1):47-49.

Xu X J, Xu S. Research and manufacture of large diameter forged grinding steel balls for mining
[J]. Heat Treatment of Metals,2013,38(1):47-49.


[8]孙浩. 大直径磨球材质与制备工艺研究
[D]. 昆明:昆明理工大学,2011.

Sun H. Study of Material and Processing of Large Scale Diameter Mill Ball
[D]. Kunming: Kunming University of Science and Technology,2011.


[9]孙浩, 蒋业华,张晓伟,等. 大直径锻球的制备工艺及其磨损性能研究
[J].铸造技术, 2011,32(6):863-865.

Sun H, Jiang Y H, Zhang X W,et al. Study on fabrication process and wear properties of largediameter forging balls
[J]. Foundary Technology, 2011, 32(6):863-865.


[10]胡建文, 阴文行,李凯,等.大规格60Mn锻球热处理工艺研究
[J]. 内燃机与配件,2019,(4):106-108.

Hu J W, Yin W X, Li K, et al. Study on heat treatment process of largesize 60Mn forged ball
[J].Internal Combustion Engine & Parts, 2019,(4):106-108.


[11]董志超, 宫本奎.轧制磨球的选材及制造研究现状
[J].山东冶金,2016,38(2):4-6.

Dong Z C, Gong B K. Research on material selection and manufacturing of rolled grinding balls
[J].Shandong Metallurgy,2016,38(2):4-6.


[12]孙志鹏, 艾云龙,周伟,等.40Mn2锻造磨球失效分析
[J]. 失效分析与预防,2015,10(1):26-30.

Sun Z P,Ai Y L, Zhou W, et al. Failure analysis of forging mill ball by 40Mn2
[J]. Failure Analysis and Prevention,2015,10(1):26-30.


[13]赵千水, 张群.BMQ80MnCr锻造耐磨钢球的研制
[J].金属世界,2014,(6):26-29.

Zhao Q S, Zhang Q. Research and manufacture of BMQ80MnCr forged grinding steel balls
[J].Metal World,2014,(6):26-29.


[14]韩玉坤, 徐铭.钢球锻造生产线的设计与分析
[J]. 矿山机械,2015,43(3):131-136.

Han Y K, Xu M. Design and analysis of steel ball forging production line
[J]. Mining & Processing Equipment, 2015,43(3):131-136.


[15]蔺亚琳. 高碳钢锻球生产工艺研究
[J]. 金属加工:热加工,2010,(5):56-57.

Lin Y L. Study on production process of gold high carbon steel forged ball
[J].Metal Working,2010,(5):56-57.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com