Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Design on deep drawing progressive die with deformable lap edge for micro motor housing
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG386
year,vol(issue):pagenumber:2020,45(11):177-180
Abstract:

  For a micro motor housing, its structure characteristics and stamping technology were analyzed, and a progressive stamping process scheme was designed with seventeen steps including deep drawing, punching, flanging, reaming, trimming, blanking, etc. Then, the layout method with intermediate carrier and the deformable lap edge form were adopted, and the progressive die structure composed of seven modules which were ejection port and insert type was designed. The test results show that the material utilization rate of deformable lap edge method is 83.4%, which not only improves the material utilization rate, reduces the production cost, but also improves the metal fluidity, and it is more conducive to deep drawing deformation of part on the basis of ensuring precision. Furthermore, the insert die structure has good interchangeability and is easy to repair, and the hanging wedge structure is adopted to complete the punching and blanking processes so that the die has a compact structure. In addition, the designs of deformable lap edge, layout scheme and progressive die structure are reasonable and feasible to meet the requirements of actual production.

 
Funds:
AuthorIntro:
魏婉珠(1994-),女,硕士研究生 E-mail:946325768@qq.com;通讯作者:黄珍媛(1975-),女,博士,副教授 E-mail:2610597@qq.com
Reference:

 [1]于仁萍, 宫晓峰.夹板多工位级进模设计[J].锻压技术,2018,43(3):140-143.


Yu R P, Gong X F. Multi-position progressive die design for clamping plate[J]. Forging & Stamping Technology,2018,43(3):140-143.


[2]杨太德,唐海波.多角弯曲件成形工艺优化与级进模结构设计[J].制造技术与机床,2019, (11):61-64.


Yang T DTang H B. Optimization of forming process and design of progressive development for multiangle bending parts[J]. Design and Research, 2019, (11):61-64.


[3]张立,陈燕,陈秋莲,等. 条带上圆形件的优化排样[J].锻压技术,2018,43(10):179-184.


Zhang LChen YChen Q Let al. Optimized layout of circular pieces on strip [J]. Forging & Stamping Technology2018, 43(10):179-184.


[4]刘昌棋,陈胤.灯头壳多工位拉深级进模设计[J].福建工程学院学报,2009,7(1):39-41.


Liu C QChen Y. Design of multi-position drawing and blanking progressive die for lamp holder shell[J].Journal of Fujian University of Technology2009,7(1):39-41.


[5]鲁建平.壳体零件多工位拉深级进模设计[J].模具工业, 2016, 42(8): 26-30.


Lu J P. Design of multi-position drawing progressive die for shell part[J]. Die & Mould Industry, 2016, 42(8): 26-30.


[6]孟玉喜.汽车开关接触片冲裁拉深级进模设计[J].模具工业, 2017, 43(3): 24-28.


Meng Y X. Design of piercing and drawing progressive die for automobile switch contact sheet[J]. Die & Mould Industry, 2017, 43(3): 24-28.


[7]何凌,邓汝荣,黄雪梅.阶梯长圆盒形件拉深级进模设计[J].模具工业, 2018, 44(1): 22-25.


He L, Deng R R, Hang X M. Drawing progressive die design of step long-roll rectangular box[J]. Die & Mould Industry, 2018, 44(1): 22-25.


[8]赖辉. 冲裁工艺中对材料的充分利用及搭边值的优化[J].制造业自动化, 2011, 33(23): 44-46.


Lai H. Fully use materials by blanking and optimization of overlap ping value[J]. Manufacturing Automation, 2011, 33(23): 44-46.


[9]黎敏绯, 周国荣. 谈多工位级进模冲压件的排样与搭边技术[J]. 职业技术, 2007(8): 146.


Li M F, Zhou G R. Discussing the layout and edge-laying technology of multi-station progressive die[J]. Vocational Technology, 2007(8): 146.


[10]严培霞, 刘世群. 圆形拉伸件无搭边排样冲压工艺[J]. 科技创业家, 2013(5): 80.


Yan P X, Liu S Q. Stamping technology of circular drawing parts with no edge arrangement[J]. Technological Pioneers, 2013(5): 80.


[11]文建平, 曾赚宝, 袁文昭. 滑轮架级进模设计[J].锻压技术, 2019, 44(9): 118-121.


Wen J P, Ceng Z B, Yuan W Z. Design of progressive die for pulley frame[J]. Forging & Stamping Technology, 2019, 44(9): 118-121.


[12]向小汉.中冷器下安装支架多工位级进模设计[J].锻压技术, 2019, 44(2): 145-149.


Xiang X H. Design of multi-station progressive die for cooler lower mounting bracket[J]. Forging & Stamping Technology, 2019, 44(2): 145-149.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com