Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Research on forgeability of die forgings for large aircraft landing gear
Authors: Zhao Mingjie  Huang Liang  Li Jianjun  Zeng Rong  Zhang Xiaoting  Zhang Han  Li Pengchuan 
Unit: Huazhong University of Science and Technology China National Erzhong Group Deyang Wanhang Die Forging Co.  Ltd. 
KeyWords: landing gear  forgeability  die forging  grain size  recrystallization volume fraction 
ClassificationCode:TG316.3
year,vol(issue):pagenumber:2020,45(9):1-7
Abstract:

The design route of die forging process for landing gear was designed by the inverse finite element method, and the three-dimensional finite element models of pre-forging and final forging processes were established, respectively. Then, the changes of grain size and forgeability for large aircraft landing gear during different forging processes were analyzed. The results show that the forging process has an important effect on the residual strain and the grain size distribution of finial forgings, and the forging process of pre-forging and final forging is better than other forging processes. The final forging process of large aircraft landing gear inherits the residual strains of pre-forging result and leads to a reduction of the residual strain for final forging process, and the maximum residual strain of final forgings is 0.272. Furthermore, the final forging process inherits the recrystallization volume fraction and grain size of pre-forging result to effectively improve the recrystallization volume fraction of difficult-to-form area and refine the grain size, and the average recrystallization volume fraction and the average grain size are 80% and Φ40 μm, respectively. Thus, the forging process of pre-forging and final forging improves the forgeability of materials and forms the forgings that meet the requirements of using.

Funds:
国家自然科学基金资助项目(51435007);国家重点研发计划(2018YFB1106003)
AuthorIntro:
赵明杰(1995-),男,博士研究生 E-mail:zmj2017@hust.edu.cn 通讯作者:黄亮(1981-),男,博士,副教授 E-mail:huangliang@hust.edu.cn
Reference:




[1]李蓬川. 大型航空模锻件的生产现状及发展趋势
[J]. 大型铸锻件, 2011,(2):39-45.


Li P C. Production status and development trend of heavy aviation die forging
[J]. Heavy Casting and Forging, 2011,(2):39-45.



[2]樊振中, 熊艳才. 航空先进制造技术的应用及发展趋势
[J]. 装备制造技术, 2011,(11):86-88.


Fan Z Z, Xiong Y C. Aviation advanced manufacturing technology application and development trend
[J]. Equipment Manufacturing Technology, 2011,(11):86-88.



[3]曾凡昌. 锻压先进制造技术及在航空工业领域的应用
[J]. 航空制造技术, 2009,(6):26-29.


Zeng F C. Advanced forging manufacturing technology and its application in aviation industry
[J]. Aeronautical Manufacturing Technology, 2009,(6):26-29.



[4]Babu P A, Saraf M, Vora K, et al. Influence of forging parameters on the mechanical behavior and hot forgeability of aluminum alloy
[J]. Materials Today: Proceedings, 2015,2(4):3238-3244.



[5]栾谦聪, 董湘怀, 吴云剑. 径向锻造工艺参数对锻透性的影响
[J]. 中国机械工程, 2014, 25(22):3098-3103.


Luan Q C, Dong X H, Wu Y J. Effects of process parameters on FPE in radial forging processes
[J]. China Mechanical Engineering, 2014, 25(22): 3098-3103.



[6]Luo J, Li M Q, Liu Y G, et al. The deformation behavior in isothermal compression of 300M ultrahigh-strength steel
[J]. Materials Science and Engineering: A, 2012,534:314-322.



[7]李洪波, 杜敬霞, 张艳姝, 等. 300M高强钢起落架外筒锻件微观组织演变预测
[J]. 塑性工程学报, 2015,22(5):1-7.


Li H B, Du J X, Zhang Y S, et al. Numerical simulation of microstructure evolution for landing gear outer cylinder forging of 300M high strength steel
[J]. Journal of Plasticity Engineering, 2015,22(5):1-7.



[8]Du F S, Wang M T, Li X T. Research on deformation and microstructure evolution during forging of large-scale parts
[J]. Journal of Materials Processing Technology, 2007,187-188:591-594.



[9]Fan X G, Yang H, Gao P F. Through-process macro-micro finite element modeling of local loading forming of large-scale complex titanium alloy component for microstructure prediction
[J]. Journal of Materials Processing Technology, 2014,214(2):253-266.



[10]张驰, 张蕊, 梁峰, 等. 石油管道阀体大锻件晶粒尺寸的数值模拟及实验研究
[J]. 塑性工程学报, 2018,25(2):168-174.


Zhang C, Zhang R, Liang F, et al. Numerical simulation and experimental study on grain size of large forgings for oil pipeline valves
[J]. Journal of Plasticity Engineering, 2018,25(2):168-174.



[11]Kobayashi S, Oh S I, Altan T, et al. Metal forming and the finite-element method
[J]. Journal of Materials Shaping Technology, 1990,8(1):65.



[12]刘目娟,翟继强,林军,等. 基于类等势场和响应面法的复杂锻件预成型优化设计
[J]. 精密成形工程, 2017,9(5):33-38.


Liu M J, Zhai J Q, Lin J, et al. Preform optimization of complex part based on quasi-equipotential field and response surface methods
[J]. Journal of Netshape Forming Engineering, 2017,9(5):33-38.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com