Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Research on process parameters of zoned rolling for CNC milling cone-bottomed melon petals with non-uniform mesh
Authors: Hu Deyou Li Jiguang Du Zhengyong Du Jiaming Wang Yalong Chen Fenghe 
Unit: Tianjin Long March Launch Vehicle Manufacturing Co. Ltd. 
KeyWords: non-uniform mesh CNC milling cone-bottomed melon petals zoned rolling boundary between thinness and thickness inclination height difference of single-sided axis 
ClassificationCode:TG386
year,vol(issue):pagenumber:2020,45(9):137-142
Abstract:

Considering factors such as force transmission and space, the bottom structure of launch vehicle box is often designed with cone bottom. For the control of forming accuracy on the CNC milling cone-bottomed melon petals with non-uniform mesh, the process parameters of zoned rolling were explored to investigate the force and deformation trend during the forming process in the mesh area and flange area. The results show that when the cone-bottomed melon petals with CNC milling is restricted by the non-uniform mesh structure, there is a sudden change in the boundary between thinness and thickness and the mesh area and the welding area, and the reverse deformation occurs and restricts each other. At the same time, it is found that the indination height difference of single-sided axis has a small effect on the straightness of the mesh area, but has important effects on the radian gap. Because of the difference in strength between the middle mesh area and the axial upper and lower auxiliary rib areas and the constrained forces in the mesh area, the weld area along the axial direction is concave, and the mesh area along the axial direction is convex. Furthermore, when the clamping gap between upper and lower shafts is 20 mm, the inclined height difference of single-sided axis in the mesh area and the flange area is 90 mm and 110 mm respectively, the radion gap is controlled within 2.0-3.5 mm, and the straightness is controlled within 4.0-5.5 mm.

Funds:
天津市科技支撑项目(17YFZCGX00530)
AuthorIntro:
胡德友(1988-),男,硕士,工程师 E-mail:hudeyou1988@126.com
Reference:


[1]姚君山, 周万盛, 王国庆,等. 航天贮箱结构材料及其焊接技术的发展
[J]. 航天制造技术, 2002,10(5): 17-22.


Yao J S, Zhou W S, Wang G Q,et al.The development of materials and welding technology of the tank
[J]. Aerospace Manufacturing Technology, 2002, 10(5): 17-22.



[2]龙乐豪, 李平岐, 秦旭东,等. 我国航天运输系统60年发展回顾
[J].宇航总体技术,2018,2(2):1-6.


Long L H, Li P Q, Qin X D,et al.The review on China space transportation system of past 60 years
[J]. Astronautical Systems Engineering Technology, 2018, 2(2): 1-6.



[3]刘劲松, 张士宏, 曾元松,等. 网格式整体壁板增量成形有限元模拟
[J] . 材料科学与工艺, 2004, 12(5): 515-517.


Liu J S,Zhang S H,Zeng Y S,et al.Simulation of incremental forming on integral panel skin with grid-type ribs
[J]. Materials Science & Technology,2004,12(5): 515-517.



[4]曾元松, 黄遐. 大型整体壁板成形技术
[J]. 航空学报,2008,(3): 721- 727.


Zeng Y S, Huang X. Forming technologies of large integral panel
[J]. Acta Aeronautica et Astronautica Sinica, 2008,(3): 721-727.



[5]Wang T, Platts M J, Wu J. The optimisation of shot peen forming processes
[J]. Journal of Materials Processing Technology, 2008,206(1-3): 78-82.



[6]黄晓婧, 王俊彪,张贤杰. 铝合金时效蠕变与时效应力松弛关系研究
[J]. 航空制造技术, 2011,(11): 99-101.


Huang X J, Wang J B, Zhang X J. Research on relationship between aging creep and stress relaxation Al-alloy
[J]. Aeronautical Manufacturing Technology,2011,(11): 99-101.



[7]Wan M,Yang Y Y,Li S B. Determination of the limiting drawing coefficient in the deep drawing of conical cups
[J].Journal of Materials Processing Technology,2001,114 (2): 114-117.



[8]陈齐广. 圆锥形件拉深成形侧壁起皱预测
[D].湘潭: 湘潭大学,2015.


Chen Q G.Prediction of Wall Wrinkling in Deep Drawing of Conical Parts
[D].Xiangtan: Xiangtan University,2015.



[9]夏琴香, 阮锋,岛进,等. 锥形件柔性旋压成形时的变形力分析
[J]. 金属成形工艺,2002,20(3):5-8.


Xia Q X, Ruan F, Shima S, et al.Analysis of the spinning forces on flexible spinning of cones
[J]. Metal Forming Technology, 2002,20(3):5-8.



[10]赵小凯, 徐文臣,陈宇,等.TA15钛合金筒-锥复合曲母线构件旋压成形工艺研究
[J].材料科学与工艺,2016,24(4): 10-17.


Zhao X K,Xu W C,Chen Y,et al. Study on the spinning process of cylinder-conical composite curved generatrix workpiece of TA15 titanium alloy
[J]. Materials Science and Technology,2016,24(4): 10-17.



[11]Sekiguchi A,Arai H.Control of wall thickness distribution by oblique shear spinning methods
[J].Journal of Materials Processing Technology,2012,212 (4): 786-793.



[12]俞汉清, 陈金德. 金属塑性成形原理
[M]. 北京: 机械工业出版社, 1999.


Yu H Q, Chen J D. Fundamental of Metal Plastic Forming
[M]. Beijing: China Machine Press, 1999.



[13]余同希, 章亮炽.塑性弯曲理论及其应用
[M]. 北京: 科学出版社,1992.


Yu T X,Zhang L Z.Plastic Bending Theory and Its Application
[M]. Beijing: Science Press,1992.



[14]李建, 陈举庆,姚久军. 四辊卷板机弯卷工艺及辊位移计算模型
[J]. 一重技术,2015,(3):1-5.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com