Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of W content on thermoplasticity for new ultra-high strength steel
Authors: Ning Jing  Wang Ao  Su Jie  Wang Maoqiu  Liu Zhenbao  Liang Jianxiong  Cheng Xingwang 
Unit: Central Iron and Steel Research Institute Beijing Institute of Technology 
KeyWords: ultra-high strength steel thermoplasticity undissolved carbides tensile strength area reduction 
ClassificationCode:TG142.41
year,vol(issue):pagenumber:2020,45(9):181-186
Abstract:

In order to research on the influence of alloying element W on the thermoplasticity for new ultra-high strength steel, the high temperature tensile behaviors for two kinds of new ultra-high strength steels with different W contents were studied by thermal simulation testing machine Gleeble-1500, and the test temperature range was 800-1200 ℃ and the strain rate was 0.1 s-1. The results show that the tensile strength of test steel with different W contents are similar, and the area reduction of test steel with low W content is obviously higher than that of high W content. In the range of 800-900 ℃, both two kinds of test steel have better plasticity due to the increase of dynamic recovery. Above 1000 ℃, the improvement of plasticity depends on the process of dynamic recrystallization, while the area reduction significantly drops when the grain boundary fusing happens at high temperature. Combined with microstructural analysis, it is concluded that the damage of W-containing undissolved carbides in large particles on the thermoplasticity is much higher than that of fine dispersed Nb, Ti, V precipitated carbides. Therefore, for the test steel with high W content, a solution treatment with langer times is employed to achieve better thermoplasticity.

Funds:
AuthorIntro:
宁静(1988-),女,硕士,工程师 E-mail:ningjing@nercast.com 通讯作者:苏杰(1965-),男,博士,正高级工程师 E-mail:sujie@nercast.com
Reference:


[1]师昌绪. 材料大辞典
[M]. 北京:化学工业出版社,1994.


Shi C X. Comprehensive Dictionary of Materials
[M]. Beijing: Chemical Industry Press, 1994.



[2]Malakondaiah G, Srinitlas M, Rama R P. Ultrahigh-strength low-alloy steels with enhanced fracture toughness
[J]. Progress in Material Science, 1997, 42(1-4): 209-242.



[3]路妍. 新型超高强度钢的合金优化及组织性能研究
[D]. 昆明:昆明理工大学,2011.


Lu Y. Study on Alloy Optimization and Microstructure of New Ultra-High Strength Steel
[D]. Kunming: Kunming University of Science and Technology, 2011.



[4]Krauss G. Panel discussion on characterization of microstructures in low carbon HSLA steels and terminology problems
[J]. ISIJ International,1995, 35(8): 349.



[5]Jack K H. Structural transformations in the tempering of high carbon martensitic steel
[J]. Journal of Iron and Steel Institute, 1951, 169(1): 26-36.



[6]崔崑. 钢的成分、组织与性能
[M]. 北京:科学出版社, 2013.


Cui K. Composition, Structure and Properties of Steels
[M]. Beijing: Science Press, 2013.



[7]Dilmore M, Ruhlman J D. Eglin steel-A low alloy high strength composition
[P]. United States Patent: C21B, No.WO 2004/067783 A2, 2004-08-12.



[8]Lu Y, Su J, Wang J H, et al. Effect of W on microstructure of high strength and toughness steels
[J]. Acta Metallurgical Sinica:English Letters, 2011, 24(6): 423-431.



[9]龚志华, 杨钢,马龙腾,等. W,Mo含量对700℃叶片用GY200镍基合金析出相及性能的影响
[J]. 稀有金属,2018,42(3):246-251.


Gong Z H,Yang G,Ma L T,et al. Precipitation phases and mechanical properties of GY200 Ni-based alloy for blade with W and Mo addition
[J]. Chinese Journal of Rare Metals, 2018, 42(3): 246-251.



[10]周士猛, 程兴旺,张由景,等. 新型超高强度钢的高温形变热处理
[J]. 材料工程,2016,44(5):37-41.


Zhou S M, Cheng X W, Zhang Y J, et al. High temperature thermo-mechanical treatment of novel ultra-high-strength steel
[J]. Journal of Materials Engineering, 2016, 44(5): 37-41.



[11]Chen B H, Yu H. Hot ductility behavior of V-N and V-Nb microalloyed steels
[J]. International Journal of Minerals, Metallurgy and Materials, 2012, 19(6): 525-529.



[12]张英杰, 王飞,董鹏,等. M54超高强度钢热塑性行为研究
[J]. 塑性工程学报,2016,23(3):119-124.


Zhang Y J, Wang F, Dong P, et al. Hot ductility behavior of M54 ultra-high strength steel
[J]. Journal of Plasticity Engineering, 2016, 23(3): 119-124.



[13]余永宁. 材料科学基础
[M]. 北京:高等教育出版社,2006.


Yu Y N. Foundation of Materials Science
[M]. Beijing: Higher Education Press, 2006.



[14]Mintz B, Abushosha R, Jonas J J. Influence of dynamic recrystallisation on the tensile ductility of steels in the temperature range 700 to 1150 ℃
[J]. ISIJ International, 1992, 32(2): 241-249.



[15]陶素芬, 王福明,严国卫,等. A105钢的高温热塑性
[J]. 材料热处理学报,2013,34(12):96-102.


Tao S F, Wang F M, Yan G W, et al. Hot ductility of A105 steel
[J]. Transactions of Materials and Heat Treatment, 2013, 34(12): 96-102.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com