Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Research and application progress on ductile fracture model of advanced highstrength steel (AHSS) for automotive
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG142
year,vol(issue):pagenumber:2021,46(1):10-16
Abstract:

 The prediction of ductile fracture has great significance to the lightweight design of automotive products and the optimization of forming processes. Therefore, the development and research status for strong coupling and weak (non) coupling ductile fracture models was comprehensively reviewed, and the research status and application effects of the three aspects including the prediction on fracture failure and forming limit curve considering loading path and stress state, the extension of failure model with anisotropic coupling, the influences of strain rate and temperature effect on material fracture were analyzed and introduced. Among them, MMC model, Lou-Hoh model, MBW model and strongly coupled shear modified GTN model and Rousselier model achieve good fracture prediction results used in advanced high-strength double phase steel, TRIP steel, QP steel and other materials. In addition, the parameter calibration methods of ductile fracture model were introduced, and the key issues and development directions of ductile fracture model of advanced high-strength steel for automobiles in the future were proposed.

 
Funds:
AuthorIntro:
作者简介:杨婷(1991-),女,硕士,工程师 E-mail:yang_ting_1991@163.com
Reference:
[1]董梁. 高强钢板材剪切边缘局部成形性能表征与开裂预测研究[D].上海:上海交通大学,2017.

Dong L. Characterization on Local Formbility of Sheared Edge and Prediction of Edge Cracking for High Strength Steel Sheet[D]. Shanghai: Shanghai Jiao Tong University, 2017.

[2]Gurson A L. Continuum theory of ductile rupture by void nucleation and growth: Part I yield criteria and flow rules for porous ductile media [J]. Journal of Engineering Materials and Technology, 1977, 99(1): 2-15.

[3]Tvergaard V, Needleman A. Analysis of the cupcone fracture in a round tensile bar[J]. Acta Metallurgica, 1984, 32(1):157-169. 

[4]Besson J, Steglich D, Brocks W. Modeling of crack growth in round bars and plane strain specimens[J]. International Journal of Solids and Structures, 2001, 38(46-47): 8529-8584.

[5]Xue L. Constitutive modeling of void shearing effect in ductile fracture of porous materials[J]. Engineering Fracture Mechanics, 2008, 75(11): 3343-3366.

[6]Butcher C, Chen Z, Bardelcik A, et al. Damagebased finiteelement modeling of tube hydroforming[J]. Int. J. Fract., 2009, 155, 55-65.

[7]Lemaitre J. A continuous damage mechanics model for ductile fracture [J]. Journal of Engineering Materials and Technology, 1985, 107(1): 83-89. 

[8]Chow C L, Wang J. An anisotropic theory of continuum damage mechanics for ductile fracture[J]. Engineering Fracture Mechanics,1987, 27(5): 547-558.

[9]Lian J H, Feng Y, Sebastian Münstermann. A modified Lemaitre damage model phenomenologically accounting for the Lode angle effect on ductile fracture[J]. Procedia Materials Science, 2014, 3: 1841-1847.

[10]Cao T S, Gachet J M, Montmitonnet P, et al. A Lodedependent enhanced Lemaitre model for ductile fracture prediction at low stress triaxiality[J]. Engineering Fracture Mechanics, 2014, 124-125: 80-96.

[11]Yue Z, Cao K, Badreddine H. Failure prediction on steel sheet under different loading paths based on fully coupled ductile damage model[J]. International Journal of Mechanical Sciences, 2019, 153-154: 1-9.

[12]Rousselier G. Ductile fracture models and their potential in local approach of fracture[J]. Nuclear engineering and design, 1987,105(1): 97-111.

[13]McClintock F A. A criterion for ductile fracture by the growth of holes [J]. Journal of Applied Mechanics, 1968, 35(2): 363-371.

[14]Cockcroft M G, Latham D J. Ductility and the workability of metals[J]. Journal of the Institute of Metals, 1968, 96: 33-39.

[15]Rice J R, Tracey D M. On the ductile enlargement of voids in triaxial stress fields [J]. Journal of the Mechanics and Physics of Solids, 1969, 17: 201-217.

[16]Brozzo P, Deluca B, Rendina R. A new method for the prediction of formability limits of metal sheets, sheet metal forming and formability[A]. Proceedings of the Seventh Biennial Congress of International Deep Drawing Research Group[C]. Netherlands,1972.

[17]Oh S I, Chen C C, Kobayashi S. Ductile fracture in axisymmetric extrusion and drawing: Part 2, workability in extrusion and drawing[J]. J. Eng. Ind., 1979, 101: 36-44.

[18]Oyane M, Sato T, Okimoto K, et al. Criteria for ductile fracture and their applications[J]. Journal of Mechanical Working Technology, 1980,4(1): 65-81.

[19]Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and press ures [J].Engineering Fracture Mechanics, 1985, 21(1): 31-48.

[20]Bao Y, Wierzbicki T. On fracture locus in the equivalent strain and stress triaxiality space [J]. International Journal of Mechanical Sciences, 2004, 46(1): 81-98.

[21]Zhang K S, Bai J B, Francois D. Numerical analysis of the influence of the Lode parameter on void growth[J]. International Journal of Solids and Structures, 2001, 38(32-33): 5847-5856.

[22]Xue L, Wierzbicki T. Ductile fracture initiation and propagation modeling using damage plasticity theory[J]. Engineering Fracture Mechanics,2008, 75(11): 3276-3293.

[23]Bai Y, Wierzbicki T. A new model of metal plasticity and fracture with pressure and Lode dependence[J]. International Journal of Plasticity, 2008, 24(6): 1071-1096 .

[24]Lian J, Wu J, Münstermann S. Evaluation of the cold formability of highstrength lowalloy steel plates with the modified BaiWierzbicki damage model[J]. International Journal of Damage Mechanics, 2015, 24(3): 383-417.

[25]Bai Y, Wierzbicki T. Application of extended MohrCoulomb criterion to ductile fracture[J]. International Journal of Fracture, 2010, 161: 1-20.

[26]Mohr D, Marcadet S. Micromechanicallymotivated phenomenological HosfordCoulomb model for predicting ductile fracture initiation at low stress triaxialities[J]. International Journal of Solids and Structures, 2015, (67-68): 40-55.

[27]Lou Y S, Huh H, Lim S J, et al. New ductile fracture criterion for prediction of fracture forming limit diagrams of sheet metals[J]. International Journal of Solids and Structures, 2012, 49(25): 3605-3615.

[28]Lou Y S, Yoon J W, Huh H. Modeling of shear ductile fracture considering a changeable cutoff value for stress triaxiality[J]. International Journal of Plasticity, 2014, 54: 56-80.

[29]Lou Y S, Yoon J W. Anisotropic ductile fracture criterion based on linear transformation[J]. International Journal of Plasticity, 2017, 93: 3-25.

[30]穆磊. 面向先进高强钢的韧性断裂预测模型研究与应用[D]. 北京:北京科技大学, 2018.

Mu L. Study on A Ductile Fracture Prediction Model for Advanced High Strength Steel and Its Application[D]. Beijing:University of Science and Technology Beijing, 2018. 

[31]Gu B, He J, Li S H, et al. Anisotropic fracture modeling of sheet metals: From inplane to outofplane[J]. International Journal of Solids and Structures, 2020, 182-183: 112-140.

[32]Li S H, He J, Gu B, et al. Anisotropic fracture of advanced high strength steel sheets: experiment and theory[J]. International Journal of Plasticity, 2018, 103: 95-118.

[33]Soyarslan C, Malekipour Gharbi M, Tekkaya A E. A combined experimentalnumerical investigation of ductile fracture in bending of a class of ferriticmartensitic steel[J]. International Journal of Solids and Structures, 2012, 49(13): 1608-1626.

[34]Pathak N, Butcher C, Adrien J, et al. Micromechanical modelling of edge failure in 800 MPa advanced high strength steels[J]. Journal of the Mechanics and Physics of Solids, 2020, 137: 1-36.

[35]Sebastian M, Peerapon W, Liu W, et al. Surface roughness influences on localization and damage during forming of DP1000 sheet steel[J]. Procedia Manufacturing, 2019, 29: 504-511.

[36]Sarraf I S, Green D E, Vasilescu D M, et al. Numerical analysis of damage evolution and formability of DP600 sheet with an extended Rousselier damage model[J]. International Journal of Solids and Structures, 2018, 134: 70-88.

[37]Habibi N, Ramazani A, Veera Sundararaghavan, et al. Failure predictions of DP600 steel sheets using various uncoupled fracture criteria[J]. Engineering Fracture Mechanics, 2018, 190(1): 367-381.

[38]Qin S P, Lu Y F, Susan B Sinnott, et al. Influence of phase and interface properties on the stress state dependent fracture initiation behavior in DP steels through computational modeling[J]. Materials Science and Engineering, 2020, 776: 1-8.

[39]黄志强. 双相钢车身板的韧性断裂失效判据研究[D]. 淄博: 山东理工大学, 2018.

Huang Z Q. The Study on Ductile Fracture Failure Criterion of Dual Phase Steels Body Panel[D]. Zibo: Shandong University of Technology,2018.

[40]Park N, Huh H, Lim S J, et al. Fracturebased forming limit criteria for anisotropic materials in sheet metal forming[J]. International Journal of Plasticity, 2017, 96: 1-35.

[41]Cheng C, Meng B, Han J Q, et al. A modified LouHuh model for characterization of ductile fracture of DP590 sheet[J]. Materials & Design, 2017, 118(15): 89-98.

[42]Liu W Q, Lian J H, Sebastian Münstermann. Damage mechanism analysis of a highstrength dualphase steel sheet with optimized fracture samples for various stress states and loading rates[J]. Engineering Failure Analysis, 2019, 106: 1-23.

[43]Darabi A C, Guski V, Butz A, et al. A comparative study on mechanical behavior and damage scenario of DP600 and DP980 steels[J]. Mechanics of Materials, 2020, 143: 1-24.

[44]Li X Y, Christian C Roth, Dirk Mohr. Machinelearning based temperature and ratedependent plasticity model: Application to analysis of fracture experiments on DP steel[J]. International Journal of Plasticity, 2019, 118: 320-344. 

[45]杨信. 高强钢TRB盒形件热冲压成形极限预测研究[D]. 哈尔滨:哈尔滨工业大学, 2017.

[46]Sarraf I S, Jenab A, Boyle K P, et al. Effect of ratedependent constitutive equations on the tensile flow behavior of DP600 using Rousselier damage model[J]. Materials & Design, 2017, 117(5): 267-279.

[47]Chiyatan T, Uthaisangsu V. Mechanical and fracture behavior of high strength steels under high strain rate deformation: Experiments and modelling[J]. Materials Science and Engineering, 2020, 779(27): 1-19.

[48]郭玉琴, 王帅, 朱新峰, 等. B340/590DP钢温热成形破裂准则提出及成形极限预测[J]. 塑性工程学报, 2015, 22(3): 38-43.

Guo Y Q, Wang S, Zhu X F, et al. Proposal of warm forming fracture criterion and forming limit prediction of B340/590DP steel[J]. Journal of Plasticity Engineering, 2015, 22(3): 38-43.

[49]Christian C Roth, Mohr D. Effect of strain rate on ductile fracture initiation in advanced high strength steel sheets: Experiments and modeling[J]. International Journal of Plasticity, 2014, 56: 19-44.

[50]Erice B, Christian C. Roth, Mohr D. Stressstate and strainrate dependent ductile fracture of dual and complex phase steel[J]. Mechanics of Materials, 2018, 116: 11-32.

[51]蒲世翱. 超高强度钢板热变形动态损伤劣化评价模型及成形极限预测[D]. 重庆:重庆大学, 2016.

Pu S A. Ultrahigh Strength Steel Plate Thermal Deformation Dynamic Damage Degradation Assessment Model and Forming Limit Prediction[D].Chongqing: Chongqing University, 2016.

[52]Santos R O, Silveira L B, Moreira L P, et al. Damage identification parameters of dualphase 600-800 steels based on experimental void analysis and finite element simulations[J]. Journal of Materials Research and Technology, 2019, 8(1): 644-659.

[53]刘倩, 刘嘉庚, 韩静涛, 等. 冷轧钢单拉本构关系与韧性断裂参数研究[J]. 塑性工程学报, 2019, 26(1):162-167.

Liu Q, Liu J G, Han J T, et al. Uniaxial tensile constitutive relationship of cold rolling steel and ductile fracture parameter[J]. Journal of Plasticity Engineering, 2019, 26(1):162-167.

[54]Djouabi M, Ati A, Manach P Y. Identification strategy influence of elastoplastic behavior law parameters on GursonTvergaardNeedleman damage parameters: Application to DP980 steel[J]. International Journal of Damage Mechanics, 2019, 28(3): 427-454.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com