Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Experimental study on formability and electromagneticassisted bending for TA32 titanium alloy sheets
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG391
year,vol(issue):pagenumber:2021,46(1):104-109
Abstract:

 Due to the poor formability of TA32 titanium alloy sheets at room temperature and the difficulty to ensure accuracy, the experimental study on electromagnetic-assisted bending method was carried out, and the mechanical properties and forming properties of TA32 titanium alloy were explored by tensile and electromagnetic forming experiments to obtain the stress-strain relationship of TA32 titanium alloy sheet under quasi-static tensile and dynamic tensile. Then, the forming limit strain in the state of electromagnetic forming was provided, and the plasticizing mechanism of TA32 titanium alloy under electromagnetic forming was clarified. Furthermore, TA32 titanium alloy sheet was studied by the uniform pressure electromagnetic-assisted bending method. The results show that the electromagnetic-assisted bending method effectively improves the forming precision of bending parts, and the higher the discharge energy under certain conditions is, the better the sticking effect to mold and the higher the forming accuracy are. In addition, the outer layer of deformation zone for the bending part with the compression wing is excessively elongated to produce thinning and cracking, and the bending part without the compression wing obtains better forming effects by reasonably controlling the discharge voltage.

Funds:
基金项目:装备预研领域基金(61409230408);国家自然科学基金资助项目(51675128)
AuthorIntro:
作者简介:林遵东(1996-),男,硕士研究生 E-mail:1761367429@qq.com 通讯作者:于海平(1974-),男,博士,副教授 E-mail:haipingy@hit.edu.cn
Reference:

 [1]程超, 陈志勇,秦绪山,等. TA32钛合金厚板的微观组织、织构与力学性能[J]. 金属学报,2020,56(2):193-202.


Chen C, Chen Z Y, Qin X S, et al. Microstructure, texture and mechanical property of TA32 titanium alloy thick plate[J]. Acta Metallurgica Sinica, 2020, 56(2): 193-202.

[2]蔡建明, 曹春晓. 新一代600 ℃高温钛合金材料的合金设计及应用展望[J]. 航空材料学报,2014,34(4):27-36.

Cai J M, Cao C X. Alloy design and application expectation of a new generation 600 ℃ high temperature titanium alloy[J]. Journal of Aeronautical Materials, 2014, 34(4): 27-36.

[3]陈灿, 陈明和,谢兰生,等. TA32新型钛合金高温流变行为及本构模型研究[J]. 稀有金属材料与工程,2019,48(3):827-834.

Chen C, Chen M H, Xie L S, et al. Flow behavior of TA32 titanium alloy at high temperature and its constitutive model[J]. Rare Metal Materials and Engineering,2019, 48(3): 827-834.

[4]Takahashi M, Murakoshi Y, Terasaki M, et al. Study on electromagnetic forming(Ⅴ)Free bulging of highstrengthmetal plates[J]. J. Mech. Eng., 1988, 42(1): 1-8.

[5]Revuelta A, Larkiola J, Korhonen A S, et al. High velocity forming of magnesium and titanium sheets[A]. Esaform Conference on Material Forming [C]. United States:American Institute of Physics,2007.

[6]Srinivasan S. A Simulation Perspective on Dimensional Control and Formability in Impact Forming[D]. Ohio State: The Ohio State University, 2010. 

[7]孙圣朋. 钛合金板材及管件电磁成形技术的研究[D]. 沈阳:沈阳航空航天大学,2016.

Sun S P. Research on the Electromagnetic Forming Technology of Titanium Alloy Sheet and Pipe Fitting[D]. Shenyang: Shenyang Aerospace University, 2016.

[8]周海洋, 莫健华,李建军,等. 钛合金TC4室温下电磁胀形的工艺分析[J]. 塑性工程学报,2013,20(3):76-81.

Zhou H Y, Mo J H, Li J J, et al. Experimental and numerical analysis of electromagnetic bulging process of titanium alloy TC4 under room temperature[J]. Journal of Plasticity Engineering, 2013,20(3): 76-81.

[9]王清江, 刘建荣,杨锐. 高温钛合金的现状与前景[J]. 航空材料学报,2014, 34(4):1-26.

Wang Q J, Liu J R, Yang R. High temperature titanium alloys: Status and perspective[J]. Journal of Aeronautical Materials, 2014, 34(4): 1-26.

[10]梅龙, 刘维,邹希凡,等. 采用均匀压力线圈的铝合金曲面零件电磁校形[J]. 锻压技术,2020, 45(9):118-122.

Mei L, Liu W, Zhou X F, et al. Electromagnetic sizing for aluminium alloy curved surface part by uniform pressure coils[J]. Forging & Stamping Techology, 2020,45 (9): 118-122.

[11]龚宗辉. TA32钛合金高温变形及动态力学行为的研究[D].南京:南京航空航天大学,2018.

Gong Z H. Investigation on the Hot Deformation and the Dynamic Mechanical Behavior of TA32 Titanium Alloy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.

[12]Li Q, Xu Y B, Bassim M N. Dynamic mechanical behavior of pure titanium[J]. Journal of Materials Processing Technology, 2004, s155-156(1):1889-1892.

[13]黄文. 纯钛高温动态拉伸力学性能研究[D]. 合肥:中国科学技术大学,2006.

Huang W. Study on the Dynamic Behavior of Polycrystalline Titanium at Elevated Temperature[D]. Hefei: University of Science and Technology of China, 2006.

[14]李光耀, 陈侣侣,耿辉辉,等. 5182Al/HC340LA异种金属件磁脉冲焊接数值模拟与试验验证[J]. 塑性工程学报,2018,25(3):155-162.

Li G Y, Chen L L, Geng H H, et al. Numerical simulation and experimental verification of magnetic pulse welding for dissimilar metal parts 5182Al/HC340LA[J]. Journal of Plasticity Engineering, 2018, 25(3): 155-162.

[15]Lee K J, Kumai S, Arai T, et al. Interfacial microstructure and strength of steel/aluminum alloy lap joint fabricated by magnetic pressure seam welding[J]. Materials Science and Engineering A, 2007, 471(1-2): 95-101.

[16]Moghaddas M A, Abdollahzadeh A, Hajian M. The effects of backplate support and welded metal type on the characteristics of joints produced by magnetic pulse welding[J]. The International Journal of Advanced Manufacturing Technology, 2019,102:379-392.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com