Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Robust design optimization on wall thickness deviation for power spinning based on satisfaction function
Authors: Yang Feng  Li Rui Zhu Lijian Zhang Jian Zhao Yidong Du Changlin 
Unit: Shanghai Xinli Power Equipment Research Institute 
KeyWords: power spinning  satisfaction function  wall thickness deviation  response surface  30Cr3 high strength steel 
ClassificationCode:TG376
year,vol(issue):pagenumber:2021,46(2):130-135
Abstract:

In order to improve the stability of forming quality for power spinning cylinder and obtain a spinning cylinder with the more stable overall dimensional accuracy, the power spinning was numerically simulated by finite element software Simufact.forming. Then, taking 30Cr3 high strength steel as the spinning material, the optimized process parameters were thinning ratio, feeding rate and axial offset, and the optimization target was the wall thickness deviation of spinning cylinder. Furthermore, the traditional double response surface was improved by introducing entropy weight theory, and a better satisfaction function was designed for the robust optimization design on the wall thickness deviation of power spinning cylinder. Finally, the GRG method was applied to solve the satisfaction function to obtain the power spinning optimization parameters with the stable wall thickness. The results show that when the thinning ratio is 57.8%, the feeding rate is 1.232 mm·s-1, and the axial offset is 3.57 mm, the average deviation value of wall thickness for spinning cylinder is 0.051 mm, the standard deviation is 0.0172 mm, and the satisfaction function value is 0.8218. At this time, the wall thickness of spinning cylinder is closer to the nominal value, and the overall wall thickness is more uniform. Through the test verification of finite element simulation, the relative error is smaller, the reliability performance is good, and it has great guiding significance for spinning process.

Funds:
AuthorIntro:
杨锋(1993-),男,硕士,助理工程师,E-mail:122297706@qq.com
Reference:

[1]寸文渊, 张晶, 崔保金, 等. 基于CAE的导管精确扩口成形技术[J]. 锻压技术, 2020, 45(10): 73-79. Cun W Y, Zhang J, Cui B J, et al. Precise flaring forming technology of catheter based on CAE[J]. Forging & Stamping Technology, 2020, 45(10): 73-79. [2]杨文华, 廖哲, 郝花蕾, 等. 3A21铝合金锥形件旋压成形工艺[J]. 锻压技术, 2019, 34(10): 88-94. Yang W H, Liao Z, Hao H L, et al. Spinning forming process of 3A21 aluminum alloy conical parts [J]. Forging & Stamping Technology, 2019, 34(10): 88-94. [3]张成, 杨海成, 韩冬, 等. 钛合金旋压技术在国内航天领域的应用及发展[J]. 固体火箭技术, 2013, 36(1): 127-132. Zhang C, Yang H C, Han D, et al. Applications and development of titanium alloys spinning technology in domestic aerospace field[J]. Journal of Solid Rocket Technology, 2013, 36(1): 127-132. [4]王大力, 郭亚明, 李亦楠, 等. 大型薄壁筒形件对轮旋压成形数值模拟及成形精度分析[J]. 锻压技术, 2020, 45(3): 47-54. Wang D L, Guo Y M, Li Y N, et al. Numerical simulation and forming precision analysis on counter-roller spinning for large thin-walled cylindrical parts [J]. Forging & Stamping Technology, 2020, 45(3):47-54. [5]詹梅, 石丰, 邓强, 等. 铝合金波纹管无芯模缩径旋压成形机理与规律[J]. 塑性工程学报, 2014, 21(2): 108-115. Zhan M, Shi F, Deng Q, et al. Forming mechanism and rules of mandreless neck-spinning on corrugated pipes[J]. Journal of Plasticity Engineering, 2014, 21(2): 108-115. [6]王雨. GH3030高温合金壁厚渐变锥形回转件强力旋压成形质量研究[D]. 宁波: 宁波大学, 2018. Wang Y. Research on Forming Quality of Conical Rotatory Parts with Continuously Variable Wall Thickness of GH3030 Super alloy During Power Spinning [D]. Ningbo: Ningbo University, 2018. [7]陈实. 筒形件强力旋压成形关键参数对成形质量影响分析及其优化[D]. 杭州: 浙江大学, 2015. Chen S. The Analysis and Optimization of Key Parameters in Tube Spinning Process[D]. Hangzhou: Zhejiang University, 2015. [8]张涛, 樊文欣, 朱芹, 等. 基于BP神经网络的连杆衬套强力旋压回弹量预测[J]. 特种铸造及其有色合金, 2017, 37(4): 380-382. Zhang T, Fan W X, Zhu Q, et al. Prediction of springback of connecting rod bushing based on BP neural network[J]. Special-cast and Non-ferrous Alloys, 2017, 37(4): 380-382. [9]吕伟. 锡青铜连杆衬套错距旋压关键工艺参数对成形质量的分析及其优化[D]. 太原: 中北大学, 2017. Lyu W. Analysis and Optimization of the Effects of the Key Process Parameters on the Forming Quality of QSn7-0.2 Connecting Rob Bushing Stagger Spinning [D]. Taiyuan: North University of China, 2017. [10]夏琴香, 张义龙, 肖刚锋, 等. 基于Abaqus的旋压件壁厚的自动测量方法[J]. 华南理工大学学报:自然科学版, 2020, 48(6): 1-7. Xia Q X, Zhang Y L, Xiao G F, et al. Automatic measurement method of thickness of spun workpieces based on abaqus [J]. Journal of South China University of Technology:Natural Science Edition, 2020, 48(6): 1-7. [11]秦杰士. 30Cr3SiNiMoNA钢的研制简介[J]. 宇航材料工艺, 1984, (6):67-80. Qin J S. Brief introduction of 30Cr3SiNiMoNA steel [J]. Aerospace Materials and Technology, 1984, (6):67-80. [12]杨锋, 樊文欣, 李涵, 等. 基于ABAQUS连杆衬套强力旋压残余应力研究[J]. 塑性工程学报, 2018, 25(3): 96-101. Yang F, Fan W X, Li H, et al. ABAQUS based residual stress analysis of connecting rod bushing in power spinning [J].Journal of Plasticity Engineering, 2018, 25(3): 96-101. [13]田口玄一. 质量工程学概论[M]. 魏锡禄,王和福,译. 北京: 中国对外翻译出版公司, 1985. Taguchi. Introduction to Quality Engineering[M]. Translated by Wei X L, Wang H F. Beijing:China Translation & Publishing Corporation, 1985. [14]Hill W J, Hunter W G. A review of response surface methodology a literature survey[J]. Technometrics, 1966, 8(4): 571-590. [15]崔凤奎, 苏涌翔, 王晓强, 等. 冷滚打花键表层加工硬化双响应曲面-满意度函数的优化分析[J]. 塑性工程学报, 2018, 25(3): 129-135. Cui F K, Su Y X, Wang X Q, et al. Analysis on optimization of double-response surface-satisfaction function of surface work-hardening for cold roll-beating spline [J]. Journal of Plasticity Engineering, 2018, 25(3): 129-135. [16]伍建军, 黄裕林, 谢周伟, 等. 基于改进满意度函数的柔顺机构多响应稳健优化设计[J]. 机械设计, 2016, 33(8): 38-42. Wu J J, Huang Y L, Xie Z W, et al. Multiple responsive robust optimization design of compliant mechanism based on improved satisfaction function[J]. Journal of Machine Design, 2016, 33(8): 38-42.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com