Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:A comparative study on thermal compression flow stress of AZ80 magnesium alloy described by improved Fields-Backofen constitutive model
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG146.2
year,vol(issue):pagenumber:2021,46(3):221-228
Abstract:

  Based on the thermal compression tests of as-cast AZ80 magnesium alloy under the strain rates of 0.001-1 s-1 and the deformation temperature of 523-673 K, the original and improved Fields-Backofen (F-B) models were established to describe the thermal compression deformation behavior of alloy, and the material parameters in the model were determined by linear fitting method. The results show that the original F-B model can only describe the work hardening phenomenon, and it is difficult to accurately describe the thermal deformation behavior of alloy. However, the improved F-B model including the softening term s comprehensively considers the work hardening and dynamic softening effects, the improved F-B model can not only describe the flow stress in the work hardening stage relatively accurately, but also the flow stress in the flow softening stage. Furthermore, the calculated values of correlation coefficient R and average absolute relative error AARE are 0.9858 and 7.07%, respectively. In addition, the improved F-B model cannot describe the flow stress in the steady-state stage, and the prediction error may be caused by the use of the average values for material parameters b and s obtained under all experimental conditions.

Funds:
国家自然科学基金资助项目(51901202);江苏省自然科学基金面上项目(BK20191442)
AuthorIntro:
李全(1993-),男,硕士,助理工程师 E-mail:quanli1993@qq.com 通讯作者:金朝阳(1973-),女,博士,教授 E-mail:zyjin@yzu.edu.cn
Reference:

 [1]Tsao L C, Huang Y T, Fan K H.Flow stress behavior of AZ61 magnesium alloy during hot compression deformation[J].Materials & Design, 2014, 53(1): 865-869.


 


[2]Mordike B L.Magnesium and magnesium alloys[J].Light Metals, 2001, 51: 2-15.


 


[3]Lu L, Liu T, Chen J, et al.Microstructure and corrosion behavior of AZ31 alloys prepared by dual directional extrusion[J].Materials & Design, 2012, 36(4):687-693.


 


[4]冯建铭, Eliane Giraud, 曹旭东, .考虑应变补偿的Al2024合金本构方程研究[J].塑性工程学报, 2017, 24(6): 157-162.


 


Feng J M, Eliane Giraud, Cao X D, et al.Study on constitutive equations of 2024 aluminum alloy considering the compensation of strain[J].Journal of Plasticity Engineering, 2017, 24(6):157-162.


 


[5]Lin Y C, Chen X M.A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J].Materials & Design, 2011, 32(4): 1733-1759.


 


[6]Wu H Y, Yang J C, Zhu F J, et al.Hot compressive flow stress modeling of homogenized AZ61 Mg alloy using strain-dependent constitutive equations[J].Materials Science and Engineering: A, 2013, 574(7): 17-24.


 


[7]叶丽燕, 翟月雯, 周乐育, .25Cr2Ni4MoV钢高温变形流变应力模型[J].锻压技术, 2019, 44(3): 144-148.


 


Ye L Y, Zhai Y W, Zhou L Y, et al.Flow stress model of 25Cr2Ni4MoV steel in hot compression test[J].Forging & Stamping Technology2019, 44(3):144-148.


[8]Dong Y, Zhang C, Lu X, et al.Constitutive equations and flow behavior of an as-extruded AZ31 magnesium alloy under large strain condition[J].Journal of Materials Engineering and Performance, 2016, 25(6): 2267-2281.


 


[9]周峰, 王克鲁, 鲁世强, .基于应变补偿的含稀土Ti_2AlNb基合金高温本构模型[J].稀有金属, 2019, 43(3): 239-246.


 


Zhou F, Wang K L, Lu S Q, et al.High temperature constitutive model of rare earth Ti2AlNb based alloy based on strain compensation[J].Chinese Journal of Rare Metals, 2019, 43(3): 239-246.


 


[10]孔得磊, 雷丽萍, 曾攀.40Mn钢热变形行为及加工图研究[J].锻压技术, 2019, 44(3): 122-132.


 


Kong D L, Lei L P, Zeng P.Research on hot deformation behavior and processing map for 40Mn steel[J].Forging & Stamping Technology2019, 44(3):122-132.


 


[11]柏阳, 吴玉程, 罗志勇, .基于Arrhenius方程和BP神经网络的2024Al/Al18B4O33w复合材料热变形流变应力预测[J].锻压技术, 2019, 44(8):168-175.


 


Bo Y, Wu Y C, Luo Z Y, et al.Prediction on hot deformation flow stress of 2024Al/Al18B4O33w composites based on Arrhenius equation and BP neural network[J].Forging & Stamping Technology, 2019,44(8):168-175.


 


[12]Quan G Z, Song T, Zhou Y J, et al.Relationship between mechanical properties and grain size of AZ80 at 350 ℃ under different strain rates[J].Transactions of Nonferrous Metals Society of China, 2010, 20(10): 584-588.


 


[13]Jia W, Xu S, Le Q, et al.Modified Fields-Backofen model for constitutive behavior of as-cast AZ31B magnesium alloy during hot deformation[J].Materials & Design, 2016, 10612: 120-132.


 


 


[14]Chen W, Guan Y, Wang Z.Modeling of flow stress of high titanium content 6061 aluminum alloy under hot compression[J].Journal of Materials Engineering and Performance, 2016, 25(9): 4081-4088.


 


[15]张宪宏.镁合金热变形过程试验研究和数值模拟[D].上海:上海交通大学,2004.


 


Zhang X H.Experimental and Numerical Study of Magnesium Alloy during Hotworking Process[D].Shanghai: Shanghai JiaoTong University, 2004.


 


[16]Quan G, Tong Y, Luo G, et al.A characterization for the flow behavior of 42CrMo steel[J].Computational Materials Science, 2010, 50(1): 167-171.


 


[17]Lyu B J, Peng J, Shi D W, et al.Constitutive modeling of dynamic recrystallization kinetics and processing maps of Mg-2.0Zn-0.3Zr alloy based on true stress-strain curves [J].Materials Science and Engineering: A, 2013, 560: 727-733.


 


[18]Bhattacharya R, Lan Y J, Wynne B P, et al.Constitutive equations of flow stress of magnesium AZ31 under dynamically recrystallizing conditions[J].Journal of Materials Processing Technology, 2014, 214(7): 1408-1417.


 


[19]Tsao L, Wu H Y, Leong J C, et al.Flow stress behavior of commercial pure titanium sheet during warm tensile deformation[J].Materials & Design, 2012, 34(9): 179-184.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com