Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of extrusion process parameters on microstructure of FGH96 alloy bar
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG376
year,vol(issue):pagenumber:2021,46(5):131-136
Abstract:

 The hot extrusion deformation of FGH96 alloy was carried out under different extrusion process parameters, and the influences of extrusion temperature, extrusion ratio and extrusion speed on the grain structure, γ′ phase of hot-extruded FGH96 alloy bar and the influences of γ′ phase on recrystallization grain growth were studied. The results indicate that the dynamic recrystallization in the FGH96 alloy happens within the range of extrusion process parameters selected by the test, and the recrystallized grain size increases with the increasing of extrusion temperature. In the microstructure of FGH96 alloy bar, the large-size γ′ phase is distributed along the grain boundary in a chain shape, and small-size γ′ phase is dispersed and distributed inside the grain. With the increasing of the extrusion temperature, the large-sized γ′ phase at the grain boundary gradually dissolves, the grain boundary remove, the migration resistance decreases, and the recrystallized grains grow up. At the extrusion temperature of 1100 ℃, the large-sized γ′ phase at the grain boundary begins to dissolve rapidly, and the recrystallized grains begin to grow obviously. The influences of extrusion ratio and extrusion speed are mainly reflected in the dual effects of effective strain and deformation latent heat on the nucleation and growth of recrystallization within unit time, and excessively large or small extrusion ratio or extrusion speed cause uneven structure. 

 
Funds:
国家重点研发计划(2019YFA0705300)
AuthorIntro:
王超渊(1986-),男,硕士,工程师 E-mail:wchy2005@126.com
Reference:

 [1]汪武祥,何峰,邹金文.粉末高温合金的应用与发展[J].航空工程与维修,2002,(6):26-28.


Wang W X, He F,Zou J W. The application and development of P/M superalloys[J]. Aviation Engineering & Maintenance,2002,(6):26-28.

[2]江和甫.对涡轮盘材料的需求及展望[J].燃气涡轮试验与研究,2002,15(4):1-6.

Jang H F. Requirements and forecast of turbine disk materials[J]. Gas Turbine Experiment and Research,2002,15(4):1-6.

[3]邹金文,汪武祥.粉末高温合金研究进展与应用[J].航空材料学报,2006,26(3):244-250.

Zou J W,Wang W X. Development and application of P/M superalloy[J]. Journal of Aeronautical Materials,2006,26(3):244-250.

[4]王淑云,张敏聪,东赟鹏,等.FGH96合金热挤压棒材超塑性研究[J].材料工程,2012,(7):24-28.

Wang S Y, Zhang M C, Dong Y P, et al. Study on superplasticity of extruded FGH96 alloy[J]. Journal of Materials Engineering,2012,(7):24-28.

[5]王淑云,李惠曲,杨洪涛.粉末高温合金超塑性等温锻造技术研究[J].航空材料学报,2007,27(5):30-33.

Wang S Y,Li H Q,Yang H T. Superplastic Isothermal forging technology of P/M superalloy[J]. Journal of Aeronautical Materials,2007,27(5):30-33.

[6]Banik A,Green K A. The mechanical property response of turbine disks produced using advanced PM processing techniques[A]. Pollock T M, Kissinger R D, Bowman R R. The 9th International Symposium on Superalloys[C]. Warrendale: The Minerals,Metals & Materials Society,2000.

[7]王淑云,李惠曲,东赟鹏.大型模锻件和模锻液压机与航空锻压技术[J].锻压装备与制造技术,2009,44(5):31-34.

Wang S Y,Li H Q,Dong Y P. Development of large singlepiece forgings and heavy forging presses in aerospace forging industry[J]. China Metalforming Equipment Manufacturing Technology,2009,44(5):31-34.

[8]刘莹莹,姚泽坤,郭鸿镇.航空发动机用双性能盘的制造技术研究进展[J].材料导报,2007,21(12):95-98.

Liu Y Y,Yao Z K,Guo H Z. Research advances in manufacture technique of dual property disk applied to aircraft engine[J]. Materials Review,2007,21(12):95-98.

[9]王淑云,李惠曲,杨洪涛.粉末冶金高温合金盘件等温锻造技术[A].第十一届中国高温合金年会论文集[C]. 北京:冶金工业出版社,2007.

Wang S Y,Li H Q,Yang H T. Isothermal forging technology of P/M superalloy discs[A]. The 11th Chinese Superalloy on the High Temperature Structural Materials for Power and Energy Sources[C]. Beijing:Metallurgical Industry Press,2007.

[10]刘趁意,王淑云,李付国.粉末高温合金挤压变形组织及变形机理研究[J].锻压装备与制造技术,2009,44(1):84-87.

Liu C Y,Wang S Y,Li F G. Study on the microstructure and deformation mechanism during extrusion deformation of powder metallurgy superalloy[J]. China Metalforming Equipment & Manufacturing Technology,2009,44(1):84-87.

[11]刘小涛,丁晗晖,杨川,等. 热挤压态FGH96粉末冶金高温合金的显微组织与力学性能[J].中国有色金属学报,2016,26(2):354-364.

Liu X T,Ding H H,Yang C,et al.Microstructure and mechanical properties of hot extruded FGH96 powder metallurgy superalloy[J]. The Chinese Journal of Nonferrous Metals,2016,26(2):354-364.

[12]Liu C Z,Liu F,Huang L,et al.Effect of hot extrusion and heat treatment on microstructure of nickelbase superalloy[J].Transactions of Nonferrous Metals Society of China,2014,(14):2544-2553.

[13]冯业飞,周晓明,邹金文,等.粉末高温合金中SiO2夹杂物与基体的界面反应机理及对其变形行为的影响[J].金属学报,2019,55(11):1437-1447.

Feng Y F, Zhou X M, Zou J W, et al. Interface reaction mechanism between SiO2 and matrix and its effect on the deformation behavior of inclusions in powder metallurgy superalloy[J]. Acta Metallurgica Sinica, 2019, 55(11): 1437-1447.

[14]方彬,纪箴,田高峰,等.FGH96高温合金中γ′相完全溶解温度的研究[J].粉末冶金技术,2013,31(2):89-95.

Fang B,Ji Z,Tian G F,et al.Investigation on complete solution temperature of γ′ in the P/M superalloy of FGH96[J]. Powder Metallurgy Technology,2013,31(2):89-95.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com