Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Study on corrosion fatigue properties of 6082-T6 aluminum alloy for railway vehicles
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG146.2;TG133+4
year,vol(issue):pagenumber:2021,46(5):228-233
Abstract:

 For 6082-T6 aluminum alloy commonly used in rail vehicles, the relationship between stress and cycle number for the transverse and longitudinal specimens under the condition of the stress ratio R=0 was obtained by the corrosion fatigue test in 3.5% NaCl solution, and the data was processed by the least square method. Then, the transverse and longitudinal corrosion fatigue S-N curves of 6082-T6 aluminum alloy sheet were obtained under the confidence of 50% and the reliability of 50%, and the fracture was observed to analyze the cause of corrosion fatigue fracture. The results show that the transverse and longitudinal corrosion fatigue limits of 6082-T6 aluminum alloy sheet are 157 and 153 MPa, respectively, and the transverse performance is slightly better than the longitudinal performance. Furthermore, the SEM microstructure analysis of fracture shows that the aluminum alloy sheet produces pitting pits under the action of corrosive solution, which leads to stress concentration, and then fatigue crack propagation. The mud-like pattern morphology, the secondary cracks and the fatigue lines appear in the initial expansion zone, until the fatigue instantaneous failure.

 
Funds:
国家重点研发计划资助项目(2017YFB0202804);国家自然科学基金资助项目(51375500);河北省高等学校科学技术研究青年基金项目(QN2018013);张家口市科学技术研究与发展指令计划项目(1911031A);中国建设教育协会教育教学科研课题(2019101)
AuthorIntro:
孙晓红(1988-),男,硕士,工程师 E-mail:sunxiaohong.sf@crrcgc.cc 通讯作者:马立勇(1987-),男,博士研究生,讲师 E-mail:maliyong0001@foxmail.com
Reference:

 [1]徐振宇, 胡道春. 6082铝合金热变形过程中的动态再结晶行为[J]. 中国有色金属学报, 2020,30(6): 1230-1237.


Xu Z Y, Hu D C. Dynamic recrystallization behavior of 6082 aluminum alloy during hot deformation[J]. The Chinese Journal of Nonferrous Metals, 2020,30(6): 1230-1237.

[2]廖儒福, 林高用, 张锐,等. 6082 铝合金铸锭均匀化热处理工艺研究[J]. 有色金属加工, 2013, 42(3):35-40.

Liao R F, Lin G Y, Zhang R, et al. Research on homogenization heat treatment of 6082 aluminum alloy[J]. Nonferrous Metals Processing, 2013, 42(3):35-40.

[3]孙晓红, 杨萌, 孔德猛,等. 6082-T6铝合金板材高低温力学性能研究[J]. 电焊机, 2019, 49(2):51-54

Sun X H, Yang M, Kong D M, et al. Research on mechanical property of 6082-T6 aluminum alloy at low and elevated temperature[J]. Electric Welding Machine, 2019, 49(2):51-54.

[4]周玉龙,袁梦,周永松,等.航空航天复杂环锻件生产动态扰动因素的智能管控技术[J].锻压技术,2020,45(12):7-14.

Zhou Y L, Yuan M, Zhou Y S, et al. Intelligent management and control technology for dynamic disturbance factors in production of complex ring forgings in aerospace [J]. Forging & Stamping Technology, 2020, 45(12):7-14.

 [5]董娜, 卢明书, 张宇锋,等. 轨道车辆空调防火标准的分析及应用研究[J]. 铁道车辆, 2019, 57(9):13-16.

Dong N, Lu M S, Zhang Y F, et al. Research on analysis and application of the fireproof standard for airconditioning on rail vehicles[J]. Railway Vehicles, 2019, 57(9): 13-16.

[6]Chavoshi S Z, Luo X. Hybrid micromachining processes:A review[J]. Precision Engineering, 2015,41:1-23.

[7]Kimberli J, Hoeppner D W. Prior corrosion and fatigue of 2024-T3 aluminum alloy[J]. Corrosion Seience, 2006, 48(10):3109-3122.

[8]Kimberli J, Shinde S R, Clark P N, et al. Effect of prior corrosion on short crack behavior in 2024-T3 aluminum alloy[J]. Corrosion Seience, 2008, 50(9): 2588-2595.

[9]Menan Frederuc, Henaff Gilbert. Influence of frequency and exposure to a saline solution on the corrosion fatigue crack growth behavior of the aluminum alloy 2024[J]. International Journal of Fatigue, 2009, 31(11): 1684-1695.

[10]李新宇, 付裕, 熊峻江. 2B25 铝合金材料腐蚀疲劳性能试验研究[J]. 中国测试, 2015,41(4):32-35.

Li X Y, Fu Y, Xiong J J. Research about corrosion fatigue behavior of 2B25 aluminum alloy[J]. China Measurement & Testing, 2015,41(4):32-35.

[11]李旭东, 穆志韬, 苏维国,等. 6A02铝合金腐蚀疲劳断口分析[J]. 青岛科技大学学报:自然科学版, 2013, 34(3):285-289.

Li X D, Mu Z T, Su W G, et al. Corrosion fatigue fracture analysis of 6A02 aluminum alloy[J]. Journal of Qingdao University of Science and Technology: Natural Science Edition, 2013, 34(3):285-289.

[12]回丽, 周松, 许良,等. 盐水环境对预腐蚀铝合金腐蚀疲劳性能的影响[J]. 航空材料学报, 2012,32(3):73-78.

Hui L, Zhou S, Xu L, et al. Influence of saline environment on fatigue property of precorroded aluminum alloy [J]. Journal of Aeronautical Materials, 2012,32(3):73-78.

[13]GB/T 20120.1—2006,金属和合金的腐蚀腐蚀疲劳试验第1部分:循环失效试验[S].

GB/T 20120.1—2006,Corrosion of metals and alloys—Corrosion fatigue test—Part 1: Cyclic failure test [S]. 

[14]GB/T 228.1—2010, 金属材料拉伸试验第1部分:室温试验方法[S].

GB/T 228.1—2010, Metallic materials—Tensile test—Part 1: Room temperature test method [S].

[15]GB/T 3075—2008, 金属材料疲劳试验轴向力控制方法[S].

GB/T 3075—2008, Metallic materials—Fatigue test—Axial force control method[S]. 

[16]高镇同, 蒋新桐, 雄峻江. 疲劳性能试验设计和数据处理-直升机金属材料疲劳性能可靠性手册[M]. 北京:北京航空航天大学出版社, 1999.

Gao Z T, Jiang X T, Xiong J J. Fatigue Performance Test Design and Data ProcessingHelicopter Metal Material Fatigue Performance Reliability Manual[M]. Beijing: Beihang University Press, 1999.

[17]郑清春,王乃鑫,朱培浩,等.铝合金薄板自冲铆接疲劳寿命仿真与分析[J].锻压技术, 2020,45(9):93-98.

Zheng Q C, Wang N X, Zhu P H, et al. Simulation and analysis on fatigue life of selfpiercing riveting for aluminum alloy sheet [J]. Forging & Stamping Technology, 2020,45(9):93-98.

[18]Nezhadfar P D, Johnson A S, Shamsaei N. Fatgue behavior and microstructural evolution of additively manufactured Inconel 718 under cyclic loading at elevated temperature[J]. International Journal of Fatigue, 2020,136:105598.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com