Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Hot working behavior of dual-state microstructure for Ti-6Al-3Nb-2Zr-1Mo alloy
Authors:  
Unit:  
KeyWords: Ti-6Al-3Nb-2Zr-1Mo alloy  dual-state microstructure  hot processing map  microstructure  mechanical properties 
ClassificationCode:TG146.4
year,vol(issue):pagenumber:2021,46(6):212-219
Abstract:

 The thermal simulation experiment of dual-state microstructure for Ti-6Al-3Nb-2Zr-1Mo alloy under the deformation temperature of 850-1050 ℃, the strain rate of 0.01-1 s-1 and the deformation amount of 60% was conducted by thermal simulation experiment machine Gleeble-1500D, the thermal deformation activation energy Q calculated from the peak stress under different conditions was 786.609 kJ·m-1, and the constitutive equation was constructed. Then, the hot processing map was established on the basis of dynamic model, and the microstructure was observed by metallographic microscope(OM) and transmission electron microscope(TEM). The experimental results show that there are two instability zones at the temperature of 860-920 ℃, the strain rate of 0.075-0.33 s-1 and the deformation temperature of 940-1030 ℃, the strain rate of 0.01-0.058 s-1, and one processing stability zone at the deformation temperature of 920-1000 ℃, the strain rate of 0.048-0.280 s-1. In addition, the alloy deformation is prone to instability at the deformation temperature of 900 ℃ and the strain rate of 0.10  s-1, and the adiabatic shear zone appears at the deformation temperature of 1000 ℃ and the strain rate of 0.050 s-1, which leads to the failure of material during use. However, at the deformation temperature of 950 ℃ and the strain rate of 0.100 s-1, the plasticity and strength of alloy are moderate, the fatigue strength and toughness are improved, and the alloy has good comprehensive mechanical properties. 

Funds:
河南省科技厅人才项目(17HASTIT026)
AuthorIntro:
作者简介:罗高丽(1995-),女,硕士研究生 E-mail:lgl723310@163.com 通信作者:张凌峰(1974-),男,博士,教授 E-mail:zh_lingfeng@163.com
Reference:

 [1]杨力祥, 肖旅,周海涛, .高强耐热稀土镁合金研究进展[J].上海航天,2019,36(2):38-44.


 


Yang L X, Xiao L,Zhou H T, et al. Current development of highstrength heatresistant rare earth magnesium alloys[J].Aerospace Shanghai,2019,36(2):38-44.


 


[2]程仁山, 潘虎成,谢东升, .新型高强度低合金化镁合金研究进展[J].中国材料进展,2020,39(1):31-38.


 


Cheng R S, Pan H C, Xie D S, et al. Research progress of newly developed highstrength and lowalloyed magnesium alloy[J].Materials China,2020,39(1):31-38.


 


[3]叶斌, 何柏林.高强镁合金及其制备工艺的研究进展[J].热加工工艺,2019,48(24):5-10.


 


Ye B, He B L. Research progress of high strength magnesium alloy and its preparation process[J].Hot Working Technology,2019,48(24):5-10.


 


[4]郭强, 严红革,陈振华, .AZ80镁合金多向锻造变形过程中晶粒取向的演变[J].金属学报,2007,43(6):619-624.


 


Guo Q, Yan H G, Chen Z H, et al. Evolution of the grain orientation of AZ80 magnesium alloy during multiple forging process[J]. Acta Metallurgica Sinica, 2007,43(6):619-624.


 


[5]姜俊, 李慧中,欧阳杰, .多向锻造AZ80A镁合金的静态再结晶行为[J].中国有色金属学报,2014,25(9):2205-2212.


 


Jiang J, Li H Z, Ouyang J, et al. Static recrystallization behavior of multidirectional forged AZ80A magnesium alloy[J].The Chinese Journal of Nonferrous Metals,2014,25(9):2205-2212.


 


[6]张浩, 崔子振,杜志惠, .高强耐热镁合金陀螺仪支架精密锻造工艺[J].宇航材料工艺,2012,42(1):50-53.


 


Zhang H, Cui Z Z, Du Z H, et al. Isothermal forming of gyroscopebrackets by numerical simulation and experiment[J].Aerospace Materials & Technology,2012,42(1):50-53.


 


[7]石彩华. 高强镁合金锻造加工工艺与组织性能研究[J].铸造技术,2018,39(4):886-889.


 


Shi C H. Processing technology and microstructure properties of highstrength magnesium alloy[J].Foundry Technology,2018,39(4):886-889.


 


[8]杜锦涛, 权高峰,段书华.轻量化高强度镁合金过渡车钩研制[J].热加工工艺,2018,47(17):151-154,158.


 


Du J T, Quan G F, Duan S H. Development of lightweight high strength magnesium alloy transition coupler[J].Hot Working Technology,2018,47(17):151-154,158.


 


[9]郝孟军, 宫涛,代艳霞.汽车轮毂用改性镁合金锻造工艺[J].锻压技术,2019,44(4):22-27.


 


Hao M J, Gong T, Dai Y X. Modified magnesium alloy forging process for automobile hub[J].Forging & Stamping Technology,2019,44(4):22-27.


 


[10]邵军. EWE531高强度耐热镁合金熔炼工艺优化[J].中国金属通报,2019,(11):108,110.


 


Shao J. Smelting process optimization for EWE531 high strength heat resistant magnesium alloy[J].China Metal Bulletin,2019,(11):108,110.


 


[11]王小宁, 张长军.减速器用高强镁合金力学及腐蚀行为研究[J].筑路机械与施工机械化,2017,34(3):107-111.


 


Wang X N, Zhang C J. Study on mechanics and corrosion behavior of high strength magnesium alloy for gear reducer[J].Road Machinery & Construction Mechanization,2017,34(3):107-111.


 


[12]王瑛. 浇注温度对汽车用含锰高强镁合金铸态性能的影响[J].轻合金加工技术,2019,47(5):30-33.


 


Wang Y. Effect of pouring temperature on ascast properties of highstrength manganesecontaining magnesium alloy for automobile[J].Light Alloy Fabrication Technology,2019,47(5):30-33.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com