Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Four-corner leveling control of hydraulic press based on task coordinate system
Authors: Xiong Yi 
Unit: Nantong Metal-forming Equipment Rugao Co.  Ltd. 
KeyWords: hydraulic press slider  four-corner leveling control  tracking control  task coordinate system  leveling force bias  pre-acceleration 
ClassificationCode:TH137
year,vol(issue):pagenumber:2021,46(7):166-171
Abstract:
For four-corner leveling electro-hydraulic system of hydraulic press slider, a control method was presented based on space task coordinate system, and the movement relationship and spatial position relationship between press slider and leveling hydraulic cylinders were analyzed to established a coordinate transform matrix. Then, the linear displacement coordinates of the four corners for press slider were converted into the task coordinates composed of center displacement and inclination angle of slider, and the slider tracking motion PID controller was designed in the task coordinate space based on the non-linear feedforward compensation of leveling force bias. Furthermore, the leveling PID controller was designed directly for the inclination angle of slider, and the control parameters for different control targets were independently adjusted without affecting each other. In addition, the pre-acceleration process based on the leveling force bias was designed to alleviate the impact when the slider contacted the leveling hydraulic cylinder. Finally, the effectiveness of the proposed control method was verified by experiments on the hydraulic press 25000 kN FRP, and in the experiment, the leveling hydraulic cylinders were respectively located at the four corners of a plane rectangle with 3550 mm×2900 mm. The experiment results show that after using the four-corner leveling control method based on the task coordinate system, the rotation inclination angles of the hydraulic press slider around the coordinate axis x and y are controlled within 0.0032°, and 0.0045° respectively, and the displacement deviation of the leveling hydraulic cylinder does not exceed 0.45 mm.
Funds:
江苏省双创人才
AuthorIntro:
作者简介:熊义(1986-),男,博士,工程师,E-mail:shonyee@163.com
Reference:
[1]Sun C, Wei J, Fang J, et al. Co-simulation ADAMS-Simulink for analysis of passive four-point leveling system of the hydraulic press [A]. Proceedings of the BATH/ASME 2016 Symposium on Fluid Power and Motion Control[C]. New York: ASME, 2016.
[2]孙春耕, 叶维本. 复合材料液压机四角调平控制系统设计 [J]. 机床与液压, 2020, 48(4): 103-105.
Sun C G, Ye W B. Design of composite hydraulic press four-corner leveling control system [J]. Machine Tool & Hydraulics, 2020, 48(4): 103-105.
[3]李欣, 王晓燕. 基于EtherCAT和遗传-BP神经网络的等温锻造电液伺服系统优化研究[J]. 机电工程, 2019, 36(5): 534-538.
Li X, Wang X Y. Optimize for isothermal forging electro-hydraulic servo system based on EtherCAT and genetic-BP neural network [J]. Journal of Mechanical & Electrical Engineering, 2019, 36(5): 534-538.
[4]韩其义, 张英男. 等温锻造液压机的四角调平控制系统[J]. 锻压装备与制造技术, 2010, 45(6): 28-30.
Han Q Y, Zhang Y N. A four corners leveling control system of isothermal forging press [J]. China Metalforming Equipment & Manufacturing Technology, 2010, 45(6): 28-30.
[5]徐济宣, 马辉. 重型液压机执行器自适应滑模容错控制[J]. 锻压技术, 2020, 45(4): 140-147.
Xu J X,Ma H. Adaptive sliding mode fault-tolerant control of actuator for heavy-duty hydraulic press [J]. Forging & Stamping Technology, 2020, 45(4): 140-147.
[6]郭玉玺, 张利. 350 MN多向双动挤压液压机活动横梁纠偏调平策略[J]. 锻压技术, 2020, 45(7): 153-159.
Guo Y X, Zhang L. Correction and leveling strategy on movable beam for 350 MN multi-directional double-action extrusion hydraulic press [J]. Forging & Stamping Technology, 2020, 45(7): 153-159.
[7]陈莹. 特大型热成型压机滑块平行控制系统研究[D]. 杭州: 浙江大学, 2013.
Chen Y. Control System for the Slider′s Parallelism of Oversized Thermoforming Press [D]. Hangzhou: Zhejiang University, 2013.
[8]乔礼惠, 徐路, 吴国健. 汽车纵梁液压机控制系统及其设置[J]. 锻压装备与制造技术, 2015, 50(4): 31-33.
Qiao L H, Xu L, Wu G J. The control method of hydraulic press for truck side member [J]. China Metalforming Equipment & Manufacturing Technology, 2015, 50(4): 31-33.
[9]刘涛. 50000 kN整体式汽车大梁液压机液压控制系统的分析研究[D]. 杭州: 浙江大学, 2002.
Liu T. Hydraulic Control System of Hydraulic Press for Side Rails of Automotive Frame [D]. Hangzhou: Zhejiang University, 2013.
[10]张红. 轧机多缸调平系统耦合同步控制方法[J]. 锻压技术, 2019, 44(5): 110-115.
Zhang H. Coupling synchronous control method for multi-cylinder leveling system of rolling mill [J]. Forging & Stamping Technology, 2019, 44(5): 110-115.
[11]Lu X, Huang M. System-decomposition-based multilevel control for hydraulic press machine [J]. IEEE Transactions on Industrial Electronics, 2012, 59(4): 1980-1987.
[12]裴红蕾, 刘刚,赵翠萍. 基于二级控制器的重型锻造液压机同步控制[J]. 锻压技术, 2019, 44(1): 118-122, 141.
Pei H L, Liu G, Zhao C P. Heavy-duty forging hydraulic press synchronous control based on secondary controller [J]. Forging & Stamping Technology, 2019, 44(1): 118-122, 141.
[13]郭凡, 魏建华, 张强, 等. 基于级联控制器的液压机位移/压力复合控制[J]. 浙江大学学报: 工学版, 2017, 51(10): 1937-1947.
Guo F, Wei J H, Zhang Q, et al. Hybrid position/pressure control of hydraulic press based on cascade controller[J]. Journal of Zhejiang University: Engineering Science, 2017, 51(10): 1937-1947.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com