Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Effects of cold rolling reduction rate on electrical conductivity and mechanical properties of W-20Cu alloy for automotive electrodes
Authors: Guo Binfeng Liu Weifeng Ma Xintan 
Unit: College of Mechanical and Electrical Engineering School of Vehicle and Traffic Engineering  Henan University of Science and Technology 
KeyWords: W-Cu alloy  cold rolling  heat treatment  microstructure  mechanical properties  electrical conductivity 
ClassificationCode:TG146.1+1
year,vol(issue):pagenumber:2021,46(8):244-250
Abstract:

 In order to improve the electrical conductivity and mechanical properties of W-20Cu alloy for auto electrodes prepared by thermal-aluminum reaction process, the properties of the alloy were strengthened by cold rolling and heat treatment at 450 ℃+1 h, and the changes of electrical conductivity and mechanical properties for W-20Cu alloy before and after heat treatment under different cold rolling reduction rates were studied by experimental test, and the performance strengthening mechanism of the alloy was further studied. The results show that the size and quantity of precipitates increase significantly after heat treatment, and the larger precipitates and many fine precipitates are formed in the cold rolled alloy matrix, which are dispersed in the Cu matrix. Then, the higher electrical conductivity of cold rolled alloy is obtained after heat treatment, the hardness of alloy is significantly improved after increasing the cold rolling reduction rate, and the hardness of alloy increases to 118.6 HV when the reduction rate reaches 80%. Finally, the strength and plasticity of alloy are improved after heat treatment, the best comprehensive property of cold rolled alloy after the heat treatment at 450 ℃+1 h 

is obtained. When the reduction rate is 80%, the brittle fracture structure forms in the fracture of alloy, and a large number of dimples are produced in the fracture area after heat treatment, which shows the phenomenon of ductile fracture.
Funds:
河南省高等教育教改基金项目(2019SJGLX512);河南省高等学校重点科研项目(15A460019)
AuthorIntro:
郭斌峰(1977-),男,硕士,讲师 E-mail:gbf19770311@126.com
Reference:

 
[1]Zhang S J,Li R G,Kang H J,et al. A high strength and high electrical conductivity Cu-Cr-Zr alloy fabricated by cryorolling and intermediate aging treatment
[J]. Materials Science and Engineering A,2017,680(5): 108-114.


 


[2]倪子枫, 凤仪,赵浩,等. W-Cu复合材料在不同电压下的电弧烧蚀性能研究
[J]. 功能材料,2021,52(2): 2124-2130.

 

Ni Z F,Feng Y,Zhao H,et al. Study on arc ablation properties of W-Cu composites at different voltages
[J]. Journal of Functional Materials,2021,52(2): 2124-2130.

 


[3]陈安琦, 霍望图,董龙龙,等. 先进铜钨复合材料研究进展
[J]. 中国材料进展,2021,40(2): 152-160. 

 

Chen A Q,Huo W T,Dong L L,et al. Research progress of advanced copper-tungsten composites
[J]. China Materials Progress,2021,40(2): 152-160.

 


[4]胡号旗, 许赪,杨丽景,等. 高强高导铜铬锆合金的最新研究进展
[J]. 材料导报,2018,32(3): 453-460. 

 

Hu H Q,Xu C,Yang L J,et al. Recent advances in the research of high strength and high conductivity Cu-Cr-Zr alloy
[J]. Materials Review,2018,32(3): 453-460.

 


[5]任俊鹏, 王毓,赵君,等. 钨渗铜复合材料致密化机理研究
[J]. 稀有金属与硬质合金,2020,48(4): 17-23. 

 

Ren J P,Wang Y,Zhao J,et al. Study on densification mechanism of tungsten-cemented copper composites
[J]. Rare Metals & Cemented Carbides,2020,48(4): 17-23.

 


[6]梁博, 王庆娟,周晓,等. 时效对ECAP变形Cu-Cr-Zr 合金组织与性能的影响
[J]. 金属热处理,2017,42(7): 43-45. 

 

Liang B,Wang Q J,Zhou X,et al. Effect of aging on microstructure and properties of ECAPed Cu-Cr-Zr alloy
[J]. Heat Treatment of Metals,2017,42(7): 43-45.

 


[7]Huang A H,Wang Y F,Wang M S,et al. Optimizing the strength,ductility and electrical conductivity of a Cu-Cr-Zr alloy by rotary swaging and aging treatment
[J]. Materials Science and Engineering A,2019,746(11): 211-216. 

 


[8]白宁, 张彦敏,宋克兴,等. 热处理对Cu-0.33Cr-0.06Zr 合金导电率与硬度的影响
[J]. 金属热处理,2015,40(1): 103-106. 

 

Bai N,Zhang Y M,Song K X,et al. Influence of aging on conductivity and hardness of Cu-0.33Cr-0.06Zr alloy
[J]. Heat Treatment of Metals,2015,40(1): 103-106.

 


[9]Kulczyk M,Pachla W,Godek J,et al. Improved compromise between the electrical conductivity and hardness of the thermo-mechanically treated Cu-Cr-Zr alloy
[J]. Materials Science and Engineering A,2018,724: 45-52. 

 


[10]袁继慧, 陈清香,陈辉明,等. 冷变形对Cu-Cr-Ti合金性能和组织的影响及其织构转变
[J]. 塑性工程学报,2019,26(4): 164-170. 

 

Yuan J H,Chen Q X,Chen H M,et al. Effect of cold deformation on the properties and microstructure of Cu-Cr-Ti alloy and its texture transformation
[J].Journal of Plasticity Engineering,2019,26(4): 164-170.

 


[11]赵凡, 刘祖铭,吕学谦,等. 粉末冶金Cu-Cr-Zr合金的形变热处理组织及性能
[J]. 粉末冶金材料科学与工程,2019,24(4): 385-390. 

 

Zhao F,Liu Z M,Lyu X Q,et al. Microstructure and properties of powder metallurgy Cu-Cr-Zr alloy by deformation heat treatment
[J]. Powder Metallurgy Materials Science and Engineering,2019,24(4): 385-390.

 


[12]Sun X L,Jie J C,Wang P F,et al. Effects of Co and Si additions and cryogenic rolling on structure and properties of Cu-Cr alloys
[J]. Materials Science and Engineering A,2019,740/741(7): 165-173. 

 


[13]梁新邦. GB/T 228—2002实施要点
[J]. 理化检验:物理分册, 2004,(1): 45-48.

 

Liang X B. Implementation main points of China national standard GB/T 228—2002
[J]. Physical and Chemical Testing:Physical Volume, 2004,(1): 45-48.

 


[14]阎璐, 杨帅, 吴春勇,等. 单步冷变形对纯铜轴瓦组织和性能的影响
[J]. 金属热处理, 2015, 40(1): 135-139.

 

Yan L, Yang S, Wu C Y, et al. Effect of one-step cold deformation on microstructure and properties of copper bearing bush
[J]. Heat Treatment of Metals, 2015, 40(1): 135-139.

 


[15]Chenna K S,Karthick N K,Sudarshan R S,et al. High strength,utilizable ductility and electrical conductivity in cold rolled sheets of Cu-Cr-Zr-Ti alloy
[J]. Journal of Materials Engineering & Performance,2018,27(2): 787-793. 

 


[16]Liu J,Wang X H,Chen J,et al. The effect of cold rolling on age hardening of Cu-3Ti-3Ni-0.5Si alloy
[J]. Journal of Alloys and Compounds,2019,797: 370-379. 

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com