Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Research progress on thermoplastic forming for bulk metallic glass composites
Authors: Gong Pan1  Yu Guoqing1  Ding Huaping1  Ma Yunfei1  Xia Min2  Li Keran1  Wang Xinyun1 
Unit:  
KeyWords:  
ClassificationCode:TG139.8
year,vol(issue):pagenumber:2021,46(9):43-54
Abstract:

  Bulk metallic glass composites (BMGCs) can solve the problem of brittleness for bulk metallic glass at room-temperature, but its characteristics of high hardness and high strength make it difficult to form by conventional machining methods, so the thermoplastic forming technology is an effective forming method to manufacture bulk metallic glass composite parts or components. Therefore, on the basis of thermoplastic forming of bulk metallic glass composites, the thermoplastic deformation behavior of bulk metallic glass composites in the supercooled liquid region was investigated, and the influences of the morphology of reinforcement phase, the volume fraction of the second phase, the temperature and strain rate on the thermal deformation behavior of bulk metallic glass composites were investigated. Then, the common thermoplastic constitutive models of bulk metallic glass composites were summarized, and the typical forming processes and methods of bulk metallic glass composites were introduced. Finally, the future development direction of the research on the thermoplastic forming of bulk metallic glass composites was prospected.

Funds:
国家自然科学基金资助项目(51725504,51601063); 中央高校基本科研业务费(2018KFYRCPT001)
AuthorIntro:
龚攀(1984-),男,博士,副教授 E-mail:pangong@hust.edu.cn 通信作者:王新云(1973-),男,博士,教授 E-mail:wangxy_hust@hust.edu.cn
Reference:

 [1]王飞龙, 杨玉婧, 吕敬旺, . 块体非晶合金超塑性成形的研究进展 [J]. 特种铸造及有色合金, 2020, 40(3): 253-258.


 


Wang F L, Yang Y J, Lyu J W, et al. Research progress in superplasticity of amorphous alloys [J]. Specialcast and Nonferrous Alloys, 2020, 40(3): 253-258.


 


[2]Wang W H. The elastic properties, elastic models and elastic perspectives of metallic glasses [J]. Progress in Materials Science, 2012, 57(3): 487-656.


 


[3]Zheng Y F, Gu X N, Witte F. Biodegradable metals [J]. Materials Science and Engineering, 2014, 77: 1-34.


 


[4]丁华平, 龚攀, 姚可夫, . 非晶合金零件成形技术研究进展 [J]. 材料导报, 2020, 34(3): 133-141.


 


Ding H P, Gong P, Yao K F, et al. The forming of amorphous alloy parts: A technological review [J]. Materials Reports, 2020, 34(3): 133-141.


 


[5]Qiao J, Jia H, Liaw P K. Metallic glass matrix composites [J]. Materials Science and Engineering, 2016, 100: 1-69.


 


[6]董杰, 王雨田, 胡晶, . 非晶合金剪切带动力学行为研究 [J]. 力学学报, 2020, 52(2): 379-391.


 


Dong J, Wang Y T, Hu J, et al. Shearband dynamics in metallic glasses [J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 379-391.


 


[7]Ding H P, Zhao Z K, Jin J S, et al. Densification mechanism of Zrbased bulk metallic glass prepared by twostep spark plasma sintering [J]. Journal of Alloys and Compounds, 2021, 850: 156724.


 


[8]Zhang L, Narayan R L, Sun B A, et al. Cooperative shear in bulk metallic glass composites containing metastable betaTi dendrites [J]. Physical Review Letters, 2020, 125(5):055501.


 


[9]Jiang Y P, Shi X P, Qiu K. Numerical study of shear banding evolution in bulk metallic glass composites [J]. Material Design, 2015, 77: 32-40.


 


[10]Pekarskaya E, Kim C P, Johnson W L. In situ transmission electron microscopy studies of shear bands in a bulk metallic glass based composite [J]. Journal of Materials Research, 2001, 16(9): 2513-2518.


 


[11]马将, 杨灿, 龚峰, . 金属玻璃的热塑性成型 [J]. 物理学报, 2017, 66(17): 251-264.


 


Ma J, Yang C, Gong F, et al. Thermoplastic forming of bulk metallic glasses[J]. Acta Physica Sinica, 2017, 66(17): 251-264.


 


[12]令狐嵘凯. 内生钛基非晶复合材料高温力学性能及微观变形机制 [D]. 太原:太原理工大学, 2019.


 


Linghu R K. Mechanical Property and Microscopic Deformation Mechanism of Insitu Tibased Metallic Glass Matrix Composites Deformed at High Temperature [D]. Taiyuan: Taiyuan University of Technology, 2019.


 


[13]Li J B, Zhang H Z, Jang J S C, et al. Viscous flow and thermoplastic forming ability of a Zrbased bulk metallic glass composite with Ta dispersoids [J]. Journal of Alloys and Compounds, 2012, 536: S165-S170.


 


[14]Zhang X Y, Yuan Z Z, Li D X. Microstructural evolution and homogeneous viscous flow behavior of a CuZr based bulk metallic glass composites [J]. Journal of Alloys and Compounds, 2014, 617: 670-676.


 


[15]Fu X L, Tan M J, Chen Y, et al. High temperature deformation behavior of Mg67Zn28Ca5 metallic glass and its composites [J]. Materials Science and Engineering, 2015, 621: 1-7.


 


[16]Singh P S, Narayan R L, Sen I, et al. Effect of strain rate and temperature on the plastic deformation behaviour of a bulk metallic glass composite [J]. Materials Science and Engineering, 2012, 534: 476-484.


 


[17]Cui J, Li J S, Wang J, et al. Deformation behavior of a Tibased bulk metallic glass composite in the supercooled liquid region [J]. Material Design, 2016, 90: 595-600.


 


[18]Wang Y S, Linghu R K, Liu Y Y, et al. Superplasticity and constitutive relationship in a Tibased metallic glassy composite [J]. Journal of Alloys and Compounds, 2018, 751: 391-398.


 


[19]Hong S H, Kim J T, Mun S C, et al. Influence of spherical particles and interfacial stress distribution on viscous flow behavior of TiCuNiZrSn bulk metallic glass composites [J]. Intermetallics, 2017,91: 90-94.


 


[20]Fu X L, Li Y, Schuh C A. Homogeneous flow of bulk metallic glass composites with a high volume fraction of reinforcement [J]. Journal of Materials Research, 2007, 22(6):1564-1573.


 


[21]Jun H, Lee K S, Chang Y W. Characterization of multiple crystallization steps in Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass [J]. Materials Science and Engineering, 2007, 449-451: 526-530.


 


[22]Qiao J W, Zhang Y, Jia H L, et al. Tensile softening of metallicglassmatrix composites in the supercooled liquid region [J]. Applied Physics Letters, 2012, 100(12): 121902.


 


[23]吴龙军. TiZr基内生非晶复合材料的过冷液相区变形行为研究 [D]. 合肥:中国科学技术大学, 2019.


 


Wu L J. Deformation Behavior of TiZrbased Metallic Glass Composites in the Supercooled Liquid Region [D]. Hefei: University of Science and Technology of China, 2019.


 


[24]Bai J, Li J S, Wang J, et al. Quasistatic and dynamic deformation of an insitu Tibased metallic glass composite in supercooled liquid region [J]. Journal of Alloys and Compounds, 2016, 679: 239-246.


 


[25]Nieh T G, Wadsworth J, Liu C T, et al. Plasticity and structural instability in a bulk metallic glass deformed in the supercooled liquid region [J]. Acta Materialia, 2001, 49(15): 2887-2896.


 


[26]Huang Y J, Shen J, Sun Y, et al. High temperature deformation behaviors of Ti40Zr25Ni3Cu12Be20 bulk metallic glass [J]. Journal of Alloys and Compounds, 2010, 504: S82-S85.


 


[27]Kawamura Y, Nakamura T, Kato H, et al. Newtonian and nonNewtonian viscosity of supercooled liquid in metallic glasses [J]. Materials Science and Engineering, 2001, 304-306: 674-678.


 


[28]Chen Q, Liu L, Chan K C. Deformation behavior of Zrbased bulk metallic glass and composite in the supercooled liquid region [J]. Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51(4): 349-355.


 


[29]Fu H M, Liu N, Wang A M, et al. Hightemperature deformation behaviors of W/Zr based amorphous interpenetrating composite [J]. Material Design, 2014, 58: 182-186.


 


[30]Xu W, Robin L, Zheng R, et al. Phase redistribution in an in situ Mgbased bulk metallic glass composite during deformation in the supercooled liquid region [J]. Scripta Materialia, 2010, 63(5): 556-559.


 


[31]Ma D Q, Yuan S Q, Ma X Z, et al. Microstructural evolution and tensile properties of an insitu TiZrbased bulk metallic glass matrix composite after hotpressing deformation in its supercooled liquid region [J]. Journal of Alloys and Compounds, 2018, 768: 415-424.


 


[32]Wu L J, Zhu Z W, Liu D M, et al. Deformation behavior of a TiZrbased metallic glass composite containing dendrites in the supercooled liquid region [J]. Journal of Materials Science & Technology, 2020, 37(2): 64-70.


 


[33]Marandi K, Thamburaja P, Shim V P W. Constitutive description of bulk metallic glass composites at high homologous temperatures [J]. Mechanics of Materials, 2014, 75: 151-164.


 


[34]Gun B, Laws K J, Ferry M. Superplastic flow of a Mgbased bulk metallic glass in the supercooled liquid region [J]. Journal of NonCrystalline Solids, 2006, 352(36-37): 3896-3902.


 


[35]白洁. TiZrNbCuBe系非晶复合材料变形行为研究 [D]. 西安:西北工业大学, 2017.


 


Bai J. Deformation Behavior of TiZrNbCuBe Bulk Metallic Glass Composites [D]. Xi′an: Northwestern Polytechnical University, 2017.


 


[36]Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses [J]. Acta Metallurgica, 1977, 25(4): 407-415.


 


[37]Johnson W L, Lu J, Demetriou M D. Deformation and flow in bulk metallic glasses and deeply undercooled glass forming liquidA self consistent dynamic free volume model [J]. Intermetallics, 2002, 10(11-12): 1039-1046.


 


[38]Kawamura Y, Nakamura T, Kato H, et al. Newtonian and nonNewtonian viscosity of supercooled liquid in metallic glasses [J]. Materials Science and Engineering, 2001, 304: 674-678.


 


[39]Bletry M, Guyot P, Brechet Y, et al. Homogeneous deformation of ZrTiAlCuNi bulk metallic glasses [J]. Intermetallics, 2004, 12(10-11): 1051-1055.


 


[40]张香云. CuZr基非晶复合材料的制备与超塑性流变行为研究 [D]. 兰州: 兰州理工大学, 2015.


 


Zhang X Y. The Research on Preparation and Superplastic Flow Behavior of CuZr Based Bulk Metallic Glass Composites [D]. Lanzhou: Lanzhou University of Technology, 2015.


 


[41]Marandi K, Shim V P W. A finitedeformation constitutive model for bulk metallic glass composites [J]. Continuum Mech Therm, 2014, 26(3): 321-341.


 


[42]刘勇, 张丽, 杨湘杰, . 大块非晶合金热塑性成形的研究进展 [J]. 江西科学, 2011, 29(5): 611-615.


 


Liu Y, Zhang L, Yang X J, et al. Research on thermoplastic forming process of bulk metallic glass [J]. Jiangxi Science, 2011, 29(5): 611-615.


 


[43]Atay H Y, Aisman D, Jirkova H, et al. Complex shape metallic glass composites produced in one step by minithixoforming [J]. International Journal of Material Forming, 2017, 10(2): 173-180.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com