Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Relationship between deformation and microstructure during precision forming of TC17 titanium alloy front axle neck verified by finite element simulation
Authors: Xu Xianglong 
Unit:  
KeyWords:  
ClassificationCode:TG379
year,vol(issue):pagenumber:2021,46(9):224-229
Abstract:

 The material flow velocity, internal temperature field and streamline distribution situation during the forming process of front neck forgings were studied by the analysis method of finite element simulation, and the metal equivalent strain distribution and the change situation of the maximum principal stress for metal in different regions of  forgings were studied by the point tracking method. At the same time, the high magnification microstructure of forgings was verified and analyzed by metallographic microscope. Through the research, it is found that the designed geometric sizes of preforming blanks, reduction rate and deformation amount are suitable, and the actual forming conditions are consistent with the results of finite element simulation. During the forming process, the temperature of the larger end of forgings is increased because of the violent flow of material, which causes the forgings to easily appear coarse or mixed crystal area. In addition, the result of temperature distribution shows the temperature drop in the area in contact with the mold is serious. In order to avoid dual-phase structure in the forgings, there should be enough machining allowance in the similar temperature drop area to ensure that the structure and properties of parts meet the requirements of standards.

Funds:
AuthorIntro:
苏春民(1977-),男,本科,研究员级高级工程师 E-mail:suchunmin@163.com
Reference:

 [1]周军,曾卫东,舒滢,等.热变形参数对Ti-17合金的片状α球化过程的影响[J].热加工工艺,2005,(1):16-1841.


 


Zhou JZeng W DShu Y et al. Influence of hot processing parameters on globularization of lamellar α in Ti-17 alloy[J]. Hot Working Technology, 2005, (1): 16-1841.


 


[2]杨晓康,王快社,史佳敏,等.TC17钛合金高温变形行为研究[J]. 稀有金属材料与工程,2018 479):2895-2900.


 


Yang X KWang K S Shi J M et al. High temperature deformation behaviour of TC17 titanium alloy[J]. Rare Metal Materials & Engineering, 2018, 479):2895-2900.


 


[3]王华,冀胜利,王凯旋,等.片层组织TC17钛合金高温变性行为研究[J].钛工业进展,2010,27(6):16-19.


 


Wang H, Ji S L, Wang K X, et al. Hot deformation behavior and microstructure evolution of TC17 titanium alloy[J]. Titanium Industry Progress, 2010,27(6):16-19.


 


[4]贾志强.热加工TC17合金组织演变及其对高温性能的影响[D].西安:西北工业大学,2016.


 


Jia Z Q. Microstructural Evolution and the Effect on High Temperature Tensile Properties of Hot Worked TC17 Titanium Alloy[D]. Xi′an: Northwestern Polytechnical University,2016.


 


[5]韩言,赵飞,万明攀,等.TC17钛合金热流变行为及组织演变机制研究[J].稀有金属,2020443):234-241.


 


Han Y Zhao FWan M Pet al. Thermal flow behaviors and microstructure evolution of TC17 alloy[J]. Chinese Journal of Rare Metals, 2020443):234-241.


 


[6]罗皎,李淼泉,李宏,等.TC4钛合金高温变形行为及其流动应力模型[J].中国有色金属学报,2008188):1395-1401.


 


Luo J Li M QLi Het al. High temperature deformation behavior of TC4 titanium alloy and its flows stress model[J]. The Chinese Journal of Nonferrous Metals, 2008188):1395-1401.


 


[7]荆磊.双相钛合金高温流变行为及动态组织演变机制研究[D].秦皇岛:燕山大学,2017.


 


Jing L. Thermal Flow Behaviors and Dynamic Microstructure Evolution of Dual Phase Titanium Alloys[D]. Qinghuangdao: Yanshan University,2017.


 


[8]黄德明,王怀柳,陈鑫,等.锻造工艺对Ti-6.5Al-1Mo-1V-2Zr合金大规格棒材的组织与性能的影响[J].中国有色金属学报:英文版,2013238):2276-2282.


 


Huang D MWang H LChen Xet al. Influence of forging progress on microstructure and mechanical properties of large section Ti-6.5Al-1Mo-1V-2Zr alloy bars[J]. Transactions of Nonferrous Metals Society of China, 2013238):2276-2282.


 


[9]周建华,王晓英,徐斌,等.TC17钛合金热变形过程中片状组织演变规律[J].钛工业进展,2012295):15-18.


 


Zhou J H, Wang X Y, Xu B, et al. Research on the microstructure evolution of TC17 titanium alloy during hot deformation [J]. Titanium Industry Progress, 2012295):15-18.


 


[10]原菁骏, 姬忠硕, 张麦仓. 热变形及热处理过程中TC17钛合金组织与取向的关联性[J].工程科学学报,2019416):722-780.


 


Yuan J J Ji Z SZhang M C. Correlation between structure and orientation of TC17 titanium alloy during thermal deformation and heat treatment[J]. Chinese Journal of Engineering, 2019, 41(6):772-780.


 


[11]王悦,江莉莉. 基于DEFORM-3DTC17钛合金棒材三辊螺旋轧制过程模拟及其应用[J].稀有金属与硬质合金,2016445):70-73.


 


Wang Y, Jiang L L. Simulation of three-roll spring rolling process of TC17 titanium alloy rod based on Deform-3D and its application[J]. Rare Metals and Cemented Carbides, 2016445):70-73.


 


[12]张蓉. 基于DEFORM-2D304奥氏体不锈钢拉深过程应力应变的数值模拟[J].机床与液压,2009, 37(8):181-183,188.


 


Zhang R. Stress-strain numerical simulation of 304 austenite stainless steel deep-drawing based on Deform-2D[J]. Machine & Tool Hydraulics, 2009,37(8):181-183, 188.


 


[13]吴捍疆,张丰收,燕根鹏. 基于数值模拟的TC4钛合金航空叶片精锻过程的金属流动规律 [J]. 锻压技术,2020,45(2):7-14.


 


Wu H JZhang F SYan G P. Flow law of metal in precision forging for TC4 titanium alloy aeronautical blade based on numerical simulation [J]. Forging & Stamping Technology2020,45(2):7-14.


 


[14]刘惠,康尚明,王少华,等. 大规格复杂曲面叶片精密模锻成形工艺设计及优化 [J]. 锻压技术,2019,44(2):7-12.


 


Liu HKang S MWang S Het al. Design and optimization on precision die forging process of large complex [J]. Forging & Stamping Technology2019, 44(2):7-12.


 


[15]李攀,罗建国,惠万馨,等. 大口径榴弹弹体成形工艺改进及工艺装备设计 [J]. 锻压技术,2020,45(2):36-44.


 


Li PLuo J GHui W Xet al. Forming technology improvement and process equipment design on grenade shell with large caliber[J]. Forging & Stamping Technology2020,45(2): 36-44.


 


[16]蔡馨,雷旻,万明攀, 等. 钛合金连续冷却转变曲线研究[J].稀有金属,20194312):1291-1296.


 


Cai X, Lei M, Wan M P, et al. Continuous cooling transformation diagram of TC17 titanium alloy[J]. Chinese Journal of Rare Metals, 20194312):1291-1296.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com