Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Stamping simulation test and analysis on automobile stainless steel cover plate
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG386.1
year,vol(issue):pagenumber:2021,46(10):131-135
Abstract:

 The most common defects in sheet stamping process are problems of wrinkling and cracking. For an automobile stainless steel cover plate with complex structure, the stamping process was numerically analyzed based on finite element platform DEFORM and orthogonal test method. Then, taking the minimum thickness, the maximum thickness, the damage value and the wrinkling of part as the evaluation objectives, the influences of different factors such as blank holder force, friction factor, clearance between punch and die and stamping speed on the forming quality of parts were studied, and the stamping process parameters were optimized by range analysis. The results show that the impacts of clearance between punch and die and blank holder force on the forming quality of parts were greater, and the impact of friction factor is the least. After adopting the optimal process parameters combination, the minimum thickness of part is increased by 53%, the damage value of part is small, and the purpose of reducing the crack risk for part is realized. Finally, according to the optimal process parameters combination, the trial production is carried out, and the parts that meet the requirements are obtained to verify the reliability of the simulation results.

 
Funds:
AuthorIntro:
作者简介:吴阿敏(1984-),女,硕士,讲师 E-mail:curryk12@yeah.net
Reference:

 [1]邓彦波.汽车冲压件制造工艺分析[J].南方农机,2020,51(16):136-137.


Deng Y B. Analysis of automobile stamping parts manufacturing process[J]. China Southern Agricultural Machinery, 2020, 51(16):136-137. 

[2]张勇,范轶,薛洋.基于Dynaform和正交试验的轿车加强梁冲压工艺参数优化[J].锻压技术,2019,44(2):37-42.

Zhang Y, Fan Y, Xue Y. Optimization on stamping process parameters of car reinforced beam based on Dynaform and orthogonal test[J]. Forging & Stamping Technology, 2019,44(2):37-42.

[3]张晓静,周贤宾,李新军,等.汽车覆盖件多工步成形数值模拟技术研究[J].塑性工程学报,2001,8(1):25-30.

Zhang X J, Zhou X B, Li X J, et al. Numerical simulation technology on multi-operation sheet forming process[J]. Journal of Plasticity Engineering, 2001,8(1):25-30.

[4]李昂,卢桥,刘春雨,等.汽车翼子板冲压工艺及翻边整形模具结构设计[J].模具技术,2020,(3):39-44.

Li A, Lu Q, Liu C Y, et al. Design of stamping process and flanging-forming die of a car fender[J]. Die and Mould Technology, 2020, (3):39-44.

[5]刘玉山,赵明,郑飞,等.后背门内板密封面起皱问题的改善[J].模具制造,2020,20(1):24-28.

Liu Y S, Zhao M, Zheng F, et al. Improvement of wrinkling problem of sealing surface for the back door inner plate[J]. Die & Mould Manufacture, 2020, 20(1):24-28.

[6]吴艳云,刘铭心,张东民,等.基于响应面法座椅撑板拉延成型工艺参数优化[J].中国科技论文,2017,12(22):2526-2530.

Wu Y Y, Liu M X, Zhang D M, et al. Optimization on drawing process parameters for seat support plate based on response surface method[J].China Sciencepaper,2017,12(22):2526-2530.

[7]贺斌,邵世芬,罗丽.基于Dynaform的方盒形件拉深压边力的数值模拟[J].青岛大学学报:自然科学版,2016,29(4):52-57

He B, Shao S F, Luo L. Numerical simulation on blank-holder force of square box part in deep drawing based on Dynaform[J]. Journal of Qingdao University: Natural Science Edition, 2016, 29(4):52-57.

[8]魏圣坤.变压边力护罩深冲成形工艺[J].锻压技术,2020,45(5):94-99.

Wei S K. Deep drawing process of shield under variable blank holder force[J]. Forging & Stamping Technology, 2020, 45(5):94-99.

[9]刘强,俞国燕,梅端.基于Dynaform与RBF-NSGA-II算法的冲压成形工艺参数多目标优化[J].塑性工程学报,2020,27(3):16-25.

Liu Q, Yu G Y, Mei D. Multi-objective optimization of stamping forming process parameters based on Dynaform and RBF-NSGAII algorithm[J]. Journal of Plasticity Engineering,2020,27(3):16-25.

[10] 门超,徐晓东.支撑板冲压成形模具磨损分析及优化[J].锻压技术,2020,45(3):131-136.

Men C, Xu X D. Wear analysis and optimization of stamping die for support plate[J].Forging & Stamping Technology, 2020, 45(3):131-136.

[11] 余世浩,尚帅.基于数值模拟和正交试验的卡车前轴辊锻工艺优化[J].锻压装备与制造技术,2016,51(4):93-97.

Yu S H, Shang S. Optimization of roll forging process for truck front-axle based on numerical simulation and orthogonal experimental method[J]. China Metalforming Equipment & Manufacturing Technology, 2016, 51(4):93-97.

[12] 张东民,盛育东,周伟民,等.SCM435合金钢线材浮动反挤压成形模拟及参数优化[J].铸造技术,2017,38(11):2698-2700.

Zhang D M, Sheng Y D, Zhou W M, et al. Forming simulation and parameter optimization of floating back extrusion for SCM435 alloy steel wires[J]. Foundry Technology, 2017, 38(11):2698-2700.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com