Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Thermoplastic flow law of highstrength steel
Authors: Sun Fuzhen1 2 Liu Zizhi1  Zhang Quanda1  Ji Rigele1 
Unit: 1. State Key Laboratory of Advanced Forming Technology and Equipment  China Academy of Machinery  Science and Technology Group 2. School of Mechanical Engineering  University of Science and Technology Beijing 
KeyWords: boron steel  tensile test  thermoforming  metallographic analysis  thermo plastic flow law 
ClassificationCode:TG142.1
year,vol(issue):pagenumber:2021,46(12):216-223
Abstract:

 For the two kinds of high-strength boron steel materials used in automobiles, the thermoplastic flow laws were studied by combining with mechanical test and microstructure test to provide a basis of process parameters for thermoforming of high-strength steel. Then, the high temperature thermal tensile tests were conducted by thermal simulator Gleeble-1500, and the plastic flow properties of the two kinds of materials during the thermoforming at deformation temperature of 600-800 and strain rate of 0.01-1 s-1 were studied. Furthermore, the cooling rate test was carried out, and the uniaxial tensile test and the metallographic analysis of tested sheet parts were carried out to further study the thermo plastic flow laws of the material under the thermal environment. The results show that as the strain rate increases, the plastic flow stress of the material increases, the work hardening phenomenon becomes more and more obvious, and the increasing of the deformation temperature makes the flow stress level of the material drop significantly. For Al-Si coated steel sheet, increasing the deformation temperature helps the formation of martensite and the improvement of the strength and hardness after the material is cooled.

 

Funds:
国家科技重大专项(2019ZX04004001)
AuthorIntro:
作者简介:孙福臻(1983-),男,硕士,高级工程师 E-mail:sfz523@163.com 通信作者:刘子知(1994-),男,硕士,助理工程师 E-mail:2399725786@qq.com
Reference:

 [1]   王存宇, 杨洁,常颖,等. 先进高强度汽车钢的发展趋势与挑战[J]. 钢铁,201954(2)1-6.


 


Wang C Y, Yang J, Chang Yet al. Development trend and challenge of advanced high strength automobile steels[J]. Iron & Steel, 201954(2):1-6.


 


[2]   马廷涛, 庄厚川,金科,等. 高强钢材料车身轻量化研究[J]. 汽车工艺与材料,2019(5)1-5:11.


 


Ma T T, Zhuang H C, Jin Ket al. Research on lightweight of highstrength steel body[J].Automobile Technology & Material, 2019(5):1-5:11.


 


[3]   李扬, 刘汉武,杜云慧,等. 汽车用先进高强钢的应用现状和发展方向[J]. 材料导报,201125(13)101-104109.


 


Li Y, Liu H W, Du Y Het al. Application and development of AHSS in automobile industry[J]. Materials Review, 201125(13):101-104109.


 


[4]   闫君杰, 王强. 汽车用新型低合金高强钢及其热处理工艺研究[J]. 热加工工艺,201847(12)165-168.


 


Yan J J, Wang Q. Study on new type low alloy high strength steel for automobile and its heat treatment process[J]. Hot Working Technology, 201847(12):165-168.


 


[5]   刘腾, 朱政强. 第三代汽车用中锰钢研究现状[J]. 兵器材料科学与工程,201942(6)102-108.


 


Liu T, Zhu Z Q. Research status of medium manganese steel for the 3rd gernation automobile sheet[J]. Ordnance Material Science and Engineering, 201942(6):102-108.


 


[6]   Karbasian H, Tekkaya A E. A review on hot stamping[J]. Journal of Materials Processing Technology, 2010, 210(15):2103-2118.


 


[7]   李强, 郭彪,吴工,等. Fe2Cu0.5C粉末烧结钢高温拉伸流动应力及预测[J]. 锻压技术,202045(8)195-204.


 


Li Q, Guo B, Wu Get al. Flow stress and prediction on powder sintered steel Fe2Cu0.5C during high temperature tensile[J]. Forging & Stamping Technology, 202045(8):195-204.        


 


[8]   万荣春, 付立铭,王学双. 1180 MPa级超高强钢慢速率拉伸延迟开裂性能[J]. 锻压技术,201944(3)140-144.


Wan R C, Fu L M, Wang X S. Delayed fracture performance of 1180 MPa ultra highstrength steel by slow strain rate tension[J]. Forging & Stamping Technology, 201944(3):140-144.


 


[9]   闫永明, 张灵,王倩,等. 1000 MPa级高破碎性钢的动态本构模型[J]. 金属热处理,202045(8)70-75.


 


Yan Y M, Zhang L, Wang Qet al. Dynamic constitutive model of 1000 MPa highfragmentation steel[J]. Heat Treatment of Metals, 202045(8):70-75.


 


[10]Barcellona APalmeri DEffect of plastic hot deformation on the hardness and continuous cooling transformations of 22MnB5 microalloyed boron steel[J]Metallurgical and Materials Transactions A200940(5): 1160-1174.


 


[11]王凯, 朱彬,王义林,等. 热冲压钢AlSi镀层形貌动态演化及形变开裂特征[J]. 塑性工程学报,202027(9)181-185.


 


Wang K, Zhu B, Wang Y Let al. Dynamic morphology evolution and deformation cracking characteristics of AlSi coating on hot stamping steel[J]. Journal of Plasticity Engineering, 202027(9):181-185.


 


[12]Zasimchuk E, Turchak T, Chausov N. Hydrodynamic plastic flow in metal materials[J]. Results in Materials, 2020,(6):1-7.        


 


[13]谷诤巍, 姜超,单忠德,等. 超高强度钢板冲压件热成形工艺[J]. 汽车工艺与材料,2009,(4)15-17.


 


Gu Z W, Jiang C, Shan Z Det al. Hot forming process of ultrahigh strength steel sheet stamping parts[J]. Automobile Technology & Material, 2009,(4):15-17.


 


[14]金学军, 龚煜,韩先洪,等. 先进热成形汽车钢制造与使用的研究现状与展望[J]. 金属学报,202056(4)411-428.


 


Jin X J, Gong Y, Han X Het al. A review of current state and prospect of the manufacturing and application of advanced hot stamping automobile steels[J]. Acta Metallurgica Sinica, 202056(4)411-428.


 


[15]Mori K, Bariani P F, Behrens B Aet al. Hot stamping of ultrahigh strength steel parts[J]. CIRP Annals, 201766(2):755-777.


 


[16]Li N, Lin J, Balint D Set al. Modelling of austenite formation during heating in boron steel hot stamping processes[J]. Journal of Materials Processing Technology, 2016237(1):394-401.        


 


[17]Huang Y CLin Y CJiao Det al.Hot tensile deformation behaviors and constitutive model of 42CrMo steel[J].Materials and Design201453(1): 349-356.


 


[18]张帅, 杨德斌. 热冲压成形汽车用高强钢板的组织与性能研究[J]. 热加工工艺,201948(7)145-147.


 


Zhang SYang D B. Study on microstructure and properties of hot stamping high strength steel sheet for automobile[J]. Hot Working Technology, 201948(7):145-147.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com