Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Constitutive model and process analysis on thermoforming of 2124 aluminum alloy
Authors: Guo Yuanheng Xie Yanmin Wang Dongtao Zhao Jiangbo Du Lingfeng 
Unit: Southwest Jiaotong University 
KeyWords: 2124 aluminum alloy  thermal tension  constitutive model  strain rate  elongation rate 
ClassificationCode:TG146.2
year,vol(issue):pagenumber:2022,47(2):213-219
Abstract:

  In order to obtain the mechanical behavior of 2124 aluminum alloy under thermal deformation, the thermal tensile test was conducted at the temperature of 350-450 ℃ and the strain rate of 0.001-0.1 s-1, and the stress-strain curves of material were obtained. The results show that the peak stress decreases with the increasing of temperature and the decreasing of strain rate, the temperature is a main factor affecting elongation rate, and there is a smaller uniform elongation rate at the low strain rate. In order to accurately describe the deformation behavior of the material under thermal deformation, a viscoplastic constitutive model was established, and material parameters of the constitutive model were obtained by genetic algorithm. The results show that the predicted value of the model is in good agreement with the experimental value. Based on the established constitutive model, the user material subroutine VUMAT was developed, the finite element model of double C part was established, and the thermoforming process of 2124 aluminum alloy was simulated and analyzed by software ABAQUS. Based on orthogonal experiment, the influences of temperature, stamping speed, blank holder force and friction coefficient on the maximum thinning rate of double C part after forming were studied, the better forming process condition was obtained by the range analysis method, and the results of forming under the process conditions were verified by experiment.

Funds:
四川省国际创新合作项目(2020YFH0078) ;四川省科技计划资助项目(2019YFG0313)
AuthorIntro:
作者简介:郭元恒(1995-),男,硕士研究生,E-mail:gyh@my.swjtu.edu.cn;通信作者:谢延敏(1975-),男,博士,副教授,E-mail:xie_yanmin@home.swjtu.edu.cn
Reference:

[1]刘兵, 彭超群,王日初,等. 大飞机用铝合金的研究现状及展望[J]. 中国有色金属学报,201020(9)1705-1715.


Liu B, Peng C Q, Wang R C, et al. Recent development and prospects for giant plane aluminum alloys[J]. The Chinese Journal of Nonferrous Metals, 2010, 20(9): 1705-1715.


[2]Zheng K L, Politis D J, Wang L, et al. A review on forming techniques for manufacturing lightweight complex-shaped aluminium panel components[J]. International Journal of Lightweight Materials and Manufacture, 201812: 55-80.


[3]齐国栋. 2124铝合金固溶时效对组织和性能的影响[D]. 哈尔滨:哈尔滨工业大学,2009.


Qi G D. Effects of Solution and Aging on Structure and Properties of 2124 Aluminum Alloy[D]. Harbin: Harbin Institute of Technology,  2009.


[4]王昌臻, 潘清林,何运斌,等. 2124铝合金热扎厚板的热处理制度[J]. 中南大学学报:自然科学版,200738(3)386-373.


Wang C Z, Pan Q L, He Y B, et al. Heat treatment of thick hot-rolled plate of 2124 alloy[J]. Journal of Central South University: Science and Technology, 2007, 38(3): 386-373.


[5]臧金鑫, 陈军洲,伊琳娜,等. 时效工艺对2124铝合金厚板组织与性能的影响[J]. 材料工程,2019,4712):98-103.


Zang J X, Chen J Z, Yi L N, et al. Effect of ageing process on microstructure and properties of 2124 aluminum alloy thick plate [J]. Journal of Materials Engineering, 2019,4712):98-103.


[6]胥福顺, 张劲,邓运来,等. 预拉伸对2124铝合金蠕变时效形性同步的影响[J]. 中国有色金属学报,201727(1)1-7.


 Xu F S, Zhang J, Deng Y L, et al. Effect of pre-stretching on synchronization of shape and property in creep age forming of 2124 aluminum alloy[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(1): 1-7.


[7]张劲, 邓运来,杨金龙,等. 2124铝合金蠕变时效实验及本构模型研究[J]. 金属学报,201349(3)379-384.


Zhang J, Deng Y L, Yang J L, et al. Experimental studies and constitutive modeling for creep aging of 2124 Al alloy[J]. Acta Metallurgica Sinica, 2013, 49(3): 379-384.


[8]聂辉文, 尹付成,聂俊红. 2124铝合金热变形的流变行为研究[J]. 特种铸造及有色合金,201333(10)887-890.


Nie H W, Yin F C, Nie J H. Rheological behavior of 2124 aluminum alloy during thermal deformation process[J]. Special Casting & Nonferrous Alloys, 2013, 33(10): 887-890.


[9]李齐飞. 2124铝合金流变规律及成形工艺优化[D]. 长沙:中南大学,2012.


Li Q F. Flow Behavior and Process Optimization of 2124 Aluminum Alloy[D]. Changsha: Central South University, 2012.


[10]Lin Y C, Chen X M. A critical review of experimental results and constitutive descriptions for metals and alloys in hot working[J]. Materials & Design, 2011, 32(4): 1733-1759.


[11]王新云, 石婵,邓磊,等. 2024铝合金高温损伤模型的建立及其应用[J]. 塑性工程学报,201926(6)120-127.


Wang X Y, Shi C, Deng L, et al. Establishment and application of high temperature damage model for 2024 Aluminum alloy[J]. Journal of Plasticity Engineering, 2019, 26(6): 120-127.


[12]张学忠, 刘建生, 何文武, 等. 12%Cr超超临界转子钢热变形行为及高温塑性本构方程[J]. 锻压技术, 2020 45(8)184-189.


Zhang X Z, Liu J S, He W W, et al. Hot deformation behavior and high temperature plastic constitutive equation for 12% Cr ultra-supercritical rotor steel[J]. Forging & Stamping Technology, 2020, 45 (8): 184-189.


[13]Lin J G, Mohamed M, Balint D, et al. The development of continuum damage mechanics-based theories for predicting forming limit diagrams for hot stamping applications[J]. International Journal of Damage Mechanics, 2014,23(5):684-701.


[14]Piccininni A, Sorgente D, Palumbo G. Genetic algorithm based inverse analysis for the superplastic characterization of a Ti-6Al-4V biomedical grade[J]. Finite Elements In Analysis & Design, 2018, 148: 27-37.


[15]傅垒, 王宝雨,林建国,等. 耦合位错密度的6111铝合金热变形本构模型[J]. 北京科技大学学报,201335(10)1333-1339.


Fu L, Wang B Y, Lin J G, et al. Constitutive model coupled with dislocation density for hot deformation of 6111 aluminum alloy[J], Journal of University of Science and Technology Beijing, 2013, 35(10): 1333-1339.


[16]校文超. 7075铝合金板材热塑性本构建模与热冲压关键技术研究[D]. 北京:北京科技大学,2018.


 


Xiao W C. Study of Unified Viscoplastic Constitutive Modeling and Key Technologies of Hot Stamping of 7075 Aluminum Sheet[D]. Beijing: University of Science and Technology Beijing, 2018.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com