Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence of different deformation amounts on microstructure and properties of Cu-2Ag alloy
Authors: Zhou Fei1  Zhang Yanmin1  2  Song Kexing1  2  Gao Hongjiao1 
Unit: 1.School of Materials Science and Engineering Henan University of Science and Technology 2.Henan Key Laboratory of Non-Ferrous Materials Science and Processing Technology 
KeyWords: cold rolling  Cu-2Ag alloy  microstructure  conductivity  mechanical properties 
ClassificationCode:
year,vol(issue):pagenumber:2022,47(3):206-210
Abstract:

 When the total deformation was constant, Cu-2Ag alloy bars were rolled and deformed by different passes and different deformation amounts, and the influences of different deformation processes on the microstructure, electrical conductivity and mechanical properties of Cu-2Ag alloy were studied. The results show that the distribution of deformation amount in each pass has different effects on the properties of the alloy when the total deformation is constant. The results of conducivity and hardness are as follows: Process 182.75% IACS, 170.34 HV; Process 283.62% IACS, 174.82 HV; Process 382.72% IACS, 180.26 HV. Under the experimental conditions, the larger the rolling deformation (60%) of the first pass is, the better the comprehensive properties of the alloy are. The microstructure of the alloy before rolling is dominated by staggered network dendrites, and after rolling deformation, the dendrites are deformed to different degrees, which is the main reason for the different properties of the alloy. However, the microstructure parallel to the rolling direction is dominated by continuously arranged “fishbone” dendrites, and after rolling deformation, the dendrite spacing increases. Within the test range, after the deformation of Process 3, the hard conductivity of the alloy reaches 0.989, and its comprehensive properties are good.

Funds:
河南省重大科技专项(创新引领专项)(191110210400)
AuthorIntro:
周菲(1998-),女,硕士研究生 E-mail:zhoufei_0526@163.com 通信作者:张彦敏(1970-),女,博士,教授 E-mail:zhangmin70@163.com
Reference:

 [1]尹志民, 张生龙.高强高导铜合金研究热点及发展趋势[J].矿冶工程,2002,22(2):1-5,9.


 


Yin Z M, Zhang S L. Research focus and development trend of high strength and high conductivity copper alloy [J]. Mining and Metallurgical Engineering, 2002,22 (2): 1-5,9.


 


[2]朱利媛, 李雷,冀国良, .Cu-4.0Ag合金微细线制备工艺及性能研究[J]. 特种铸造及有色合金, 2017, 37(12:1357-1360.


 


Zhu L Y, Li L, Ji G L, et al. Study on preparation technology and properties of Cu-4.0Ag alloy micro wire [J]. Special Casting & Nonferrous Alloys, 2017, 37(12:1357-1360.


 


[3]向文永, 陈小祝,匡同春, .集成电路用引线框架材料的研究现状与趋势[J].材料导报,2006,20(3):122-125.


 


Xiang W Y, Chen X Z, Kuang T C, et al. Research status and trend of lead frame materials for integrated circuits [J]. Materials Reports, 2006,20 (3): 122-125.


 


[4]袁远, 汤文亮.Cu-Al2O3弥散强化铜合金接触线的组织和性能[J].材料热处理学报,2020,41(1):33-38.


 


Yuan Y, Tang W L. Microstructure and properties of Cu-Al2O3 dispersion strengthened copper alloy contact wire [J]. Journal of Material Heat Treatment, 2020,41 (1): 33-38.


 


[5]张晓辉, 李永年,宁远涛, .高强度、高导电性Cu-Ag合金的研究进展[J].贵金属,2001,22(1):47-52.


 


Zhang X H, Li Y N, Ning Y T, et al. Research progress of high strength and high conductivity Cu-Ag alloys [J]. Precious Metals, 2001,22 (1): 47-52.


 


[6]Geng Y F, Ban Y J, Wang B J, et al. A review of microstructure and texture evolution with nanoscale precipitates for copper alloys [J]. Journal of Materials Research and Technology, 2020, 9(5):11918-11934.


 


[7]袁竭, 隆永胜,赵顺洪, .高强高导Cu合金强化技术研究进展[J].特种铸造及有色合金,2015,35(8):828-832.


 


Yuan J, Long Y S, Zhao S H, et al. Research progress on strengthening technology of high strength and high conductivity Cu alloy [J]. Special Casting & Nonferrous Alloys, 2015,35 (8): 828-832.


 


[8]周延军, 宋克兴,米绪军, .Cu-Be-Co-Zr合金时效析出动力学[J].稀有金属材料与工程,2018,47(4):1096-1099.


 


Zhou Y J, Song K X, Mi X J, et al. Aging precipitation kinetics of Cu-Be-Co-Zr alloy [J]. Rare Metal Materials and Engineering, 2018,47 (4): 1096-1099.


 


[9]谢志雄, 董仕节,罗平.均匀化对Cu-Fe-Ag复合材料组织和性能的影响[J].特种铸造及有色合金,2017,37(3):316-319.


 


Xie Z H, Dong S J, Luo P. Effect of homogenization on microstructure and properties of Cu-Fe-Ag composite [J]. Special Casting and Nonferrous Alloy, 2017,37 (3): 316-319.


 


[10]潘振亚. 高强高导Cu-Cr-Zr合金组织和性能的研究[D].上海:上海交通大学,2015.


 


Pan Z Y. Study on Microstructure and Properties of High Strength and High Conductivity Cu-Cr-Zr Alloy [D]. Shanghai: Shanghai Jiaotong University, 2015.


 


[11]Benghalem A,  Morris D G.Influence of solidification conditions, thermomechanical processing, and alloying additions on the structure and properties of in situ composite Cu-Ag alloys[J].Scripta Materialia,1999,41(10):1123-1130.


 


[12]Gaganov A,Freudenberger J,Grunberger W,et al.Microstructural evolution and its effect on the mechanical properties of Cu-Ag microcomposites[J].Zeitschrift Fur Metallkunde,2004,95(6):425-432.


 


[13]张亚宁, 严文,陈建, .塑性变形对单晶铜线材导电性影响的研究[J].西安工业学院学报,2005,25(2):150-152.


 


Zhang Y N, Yan W, Chen J, et al. Effect of plastic deformation on conductivity of single crystal copper wire [J]. Journal of Xian Technological University, 2005,25 (2): 150-152.


 


[14]于婷, 李学斌,李鸿娟, .拉拔变形量对硬铜轧制杆和拉拔杆组织及性能的影响[J].特种铸造及有色合金,2020,40(3):345-348.


 


Yu T, Li X B, Li H J, et al. Effect of drawing deformation on Microstructure and properties of hard copper rolling rod and drawing rod [J]. Special Casting and Nonferrous Alloy, 2020,40 (3): 345-348.


 


[15]Mishin O V, Jensen D J, Hansen N.Microstructures and boundary populations in materials produced by equal channel angular extrusion[J].Materials Science & Engineering, A,2003,342(1-2):320-328.


 


[16]Torkestani A,Dashtbayazi M R.A new method for severe plastic deformation of the copper sheets[J].Materials Science & Engineering, A,2018,737:236-244.


 


[17]Kad B K, Mishra A, Gregori F.Microstructural evolution in copper subjected to severe plastic deformation: Experiments and analysis[J].Acta Materialia,2007,55(26):13-28.


 


[18]潘志勇, 汪明朴,李周, .超高强度Cu-5.2Ni-1.2Si合金的形变热处理[J].中国有色金属学报,2007,17(11):1821-1826.


 


Pan Z Y, Wang M P, Li Z, et al. Thermomechanical treatment of ultra high strength Cu-5.2Ni-1.2Si alloy [J]. The Chinese Journal of Nonferrous Metals, 2007,17 (11): 1821-1826.


 


[19]Sakai Y,Inoue K,Asano T,et al.Development of high-strength high-conductivity Cu-Ag alloys for high-field pulsed magnet use[J].Applied Physics Letters,1991,59(23):2965-2967.


 


[20]Benghalem A,Morris D G.Microstructure and strength of wire-drawn Cu-Ag filamentary composites[J].Acta Materialia,1997,45(1):397-406.


 


[21]Liu J B,Meng L.Microstructure evolution and properties of Cu-Ag microcomposites with different Ag content[J].Materials Science and Engineering A,2006, 435(11):237-244.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com