Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Optimization design on shell deep drawing die based on response surface methodology and grey wolf optimization algorithm
Authors: Hu Kaiyuan1  Wang Leigang2 
Unit: 1.Department of Automation Engineering Engineering and Technical College of Chengdu University of Technology 2.School of Materials Science and Engineering  Jiangsu University 
KeyWords: shell  deep drawing  die optimization  response surface methodology  grey wolf optimization algorithm 
ClassificationCode:TG389
year,vol(issue):pagenumber:2022,47(6):244-250
Abstract:

 n order to solve the practical problem of optimization design for deep drawing die for shell, a optimization method was proposed to optimize the size parameters of die based on response surface methodology and grey wolf optimization algorithm. Then, taking die fillet radius Ra, diameter of intermediate zon Dm, angle α entering the die and width B with constant diameter as the design variables, the experimental arrangement was conducted by central composite design, and taking outer diameter, height, center bottom thickness and mouth roughness of shell as the optimization indexes, the response surface models between design variables and optimization indexes was constructed by combining grey relational analysis method and entropy weight method. Furthermore, the prediction model was optimized by gray wolf optimization algorithm, and the optimal combination of die size parameters were Ra=12 mmDm=Φ19.3 mm,α=20° and B=1.4 mm. Finally, the optimal die size parameters were verified by numerical simulation and process test. The results show that all the size indexes of shell meet the design requirements.

Funds:
2021年乐山市重点科技研究项目(21GZD007)
AuthorIntro:
胡开元(1983-),男,硕士,讲师 E-mail:626489509@qq.com
Reference:

 [1]胡冶昌, 魏志芳, 李晓光, 等. 基于NX高级仿真的弹壳冲盂工序数字化模型研究[J]. 塑性工程学报, 2017, 24(2): 122-127.


 

Hu Y C, Wei Z F, Li X G, et al. Digital model study on the cartridge case extrusion forming based on NX advanced simulation [J]. Journal of Plasticity Engineering, 2017, 24(2):122-127.

 

[2]李晓光, 魏志芳, 高建中, 等. 枪弹弹壳挤盂组合模新型设计与研究[J]. 兵工自动化, 2016, 35(2): 82-85.

 

Li X G, Wei Z F, Gao J Z, et al. New design and research of bullet casting extrusion combined die [J]. Ordnance Industry Automation, 2016, 35(2):82-85.

 

[3]Nejad S H, Hasanzadeh R, Doniavi A, et al. Finite element simulation analysis of laminated sheets in deep drawing process using response surface method[J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(9-12): 3245-3259.

 

[4]Mrabti I E, Touache A, Hakimi A E, et al. Springback optimization of deep drawing process based on FEMANNPSO strategy [J]. Structural and Multidisciplinary Optimization, 2021, (1): 1-13.

 

[5]Feng Y X, Hong Z X, Gao Y C, et al. Optimization of variable blank holder force in deep drawing based on support vector regression model and trust region [J]. The International Journal of Advanced Manufacturing Technology, 2019, 105(1-3): 4265-4278.

 

[6]嵇友迪, 龚红英, 贾星鹏, 等. 基于响应面与遗传算法的汽车油箱托盘仿真优化[J]. 塑性工程学报, 2021, 28(12): 29-35.

 

Ji Y D, Gong H Y, Jia X P, et al. Simulation and optimization of automobile fuel tank tray based on response surface and genetic algorithm [J]. Journal of Plasticity Engineering, 2021, 28(12): 29-35.

 

[7]赵小云, 龚红英, 施为钟, 等. 基于RSM与NSGAⅡ的燃气灶外壳零件成形质量多目标优化[J]. 轻工机械, 2021, 39(1): 86-91.

 

Zhao X Y, Gong H Y, Shi W Z, et al. Multiobjective optimization of forming quality of gas stove shell parts based on RSM and NSGAⅡ [J]. Light Industry Machinery, 2021, 39(1): 86-91.

 

[8]施为钟, 龚红英, 姜天亮, 等. 基于Dynaform和响应面法的带凸缘圆筒件拉深工艺优化[J]. 上海工程技术大学学报, 2020, 34(2): 168-173.

 

Shi W Z, Gong H Y, Jiang T L, et al. Drawing process optimization of cylinder with flange based on Dynaform and response surface method [J]. Journal of Shanghai University of Engineering Science, 2020, 34(2): 168-173.

 

[9]周杰, 罗艳, 王珣, 等. 汽车内板件冲压成形工艺参数多目标优化[J]. 兵器材料科学与工程, 2015, 38(2): 15-17:

 

Zhou J, Luo Y, Wang X, et al. Multiobjective optimization of stamping forming process of automobile inner panel [J]. Ordnance Material Science and Engineering, 2015, 38(2): 15-17.

 

[10]周杰, 罗艳, 王珣, 等. 基于响应面的封头冲压成形工艺多目标优化[J]. 吉林大学学报:工学版, 2016, 46(1): 205-212.

 

Zhou J, Luo Y, Wang X, et al. Multiobjective optimization of stamping forming process of head based on response surface model [J]. Journal of Jilin University:Engineering and Technology Edition, 2016, 46(1): 205-212.

 

[11]洪旗, 史耀耀, 路丹妮, 等. 基于灰色关联分析和响应面法的复合材料缠绕成型多目标工艺参数优化[J]. 复合材料学报, 2019, 36(12): 2822-2832.

 

Hong Q, Shi Y Y, Lu D N, et al. Multiresponse parameter optimization for the composite tape winding process based on grey relational analysis and response surface methodology [J]. Acta Materiae Compositae Sinica, 2019, 36(12): 2822-2832.

 

[12]梁强, 周杰, 何雄, 等. 载重汽车用直齿轮冷挤压工艺参数多目标优化[J]. 中南大学学报:自然科学版, 2017, 48(12): 3216-3223.

 

Liang Q, Zhou J, He X, et al. Multiobjective optimization of cold extrusion process parameters for spur gear of camion [J]. Journal of Central South University:Science and Technology, 2017, 48(12): 3216-3223.

 

[13]付向辉, 张立刚, 李立, 等. 电絮凝除铊工艺的响应曲面优化[J]. 稀有金属, 2020, 44(5): 530-539.

 

Fu X H, Zhang L G, Li L, et al. Optimization of electrocoagulation process for thallium removal from aqueous solutions by response surface methodology[J]. Chinese Journal of Rare Metals,2020, 44(5): 530-539.

 

[14]Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer [J]. Advances in Engineering Software, 2014, 69(3): 46-61.

 
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com