Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Analysis and improvement on local deformation of punching for piston pin
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG316.1+5
year,vol(issue):pagenumber:2022,47(7):13-19
Abstract:

 For a piston pin of an internal combustion engine, the result of excessive local upsetting deformation at the bottom of piston pin punching was analyzed and corrected. Firstly, 20CrH steel samples for piston pin materials were subjected to tensile and compression tests at room temperature, the tensile process was numerically simulated by software DEFORM, and the Normalized Cockcroft & Latham (NCL) ductile fracture criterion was used as a model to solve the critical value of 0.22. Secondly, the NCL model was used to numerically simulate the punching process for piston pin, and the reasons for the local upsetting deformation of piston pin punching were analyzed. The outside of the cylinder wall was in state of no radial constraint, during the punching process, the axial and radial composite metal flow occurred at the cylinder wall corresponding to the connecting skin. Finally, on the basis of not changing the original mold, a solution method was proposed to reduce the local upsetting deformation at the bottom by reducing the thickness of connecting skin. The results of numerical simulation and process test show that this method can ensure that the size of the outer cylindrical surface of piston pin after punching will not be  out of tolerance due to excessive local upsetting deformation. 

Funds:
乐山市科技局重点研究项目(21GZD029)
AuthorIntro:
作者简介:袁磊(1986-),男,硕士,讲师 E-mail:yuanlei11@163.com
Reference:

 [1]梁强. 活塞销冷镦挤成形微折叠缺陷分析及改进措施[J]. 塑性工程学报,2018,25(6):99-104.


Liang Q. Micro-folding defect analysis and improvement of cold upsetting-extruding process for piston-pin [J]. Journal of Plasticity Engineering, 2018, 25(6): 99-104.

[2]王德俊, 姚志英,李艳红,等. 活塞销冷挤压成形工艺研究[J]. 热加工工艺,2011,40(17):86-88.

Wang D J, Yao Z Y, Li Y H, et al. Study of cold extrusion forming process for piston pin [J]. Hot Working Technology, 2011, 40(17):86-88.

[3]蒲思洪, 温彤,吴维,等. 韧性断裂准则与阀值选取的理论及试验研究[J]. 热加工工艺,2009,38(3):18-21.

Pu S H, Wen T, Wu W, et al. Theoretical and experimental research on choosing criterion and critical value of ductile fracture [J]. Hot Working Technology, 2009, 38(3):18-21.

[4]高锦张, 叶明,马武江,等. 圆柱锻件冲孔允许变形量对应孔径比的模拟研究[J]. 锻压装备与制造技术,2018,53(5):54-58.

Gao J Z, Ye M, Ma W J, et al. Simulation study on the allowable deformation of punching holes in cylindrical forgings to the ratio of hole diameter [J]. China Metalforming Equipment & Manufacturing Technology, 2018, 53(5): 54-58.

[5]盛亚栋, 樊瑜瑾,蒋崇健. 冲裁间隙对多层薄铜板成形的影响[J]. 锻压技术,2020,45(3):27-36.

Sheng Y D, Fan Y J, Jiang C J. Influence of blanking clearance on forming of multi-layer thin copper plate [J]. Forging & Stamping Technology, 2020, 45(3):27-36.

[6]孙晓明, 李树林,杜晓钟,等. 辗钢整体车轮辐板压弯冲孔数值模拟[J]. 塑性工程学报,2020,27(6):23-29.

Sun X M, Li S L, Du X Z, et al. Numerical simulation of web bending and punching of rolled solid wheels [J]. Journal of Plasticity Engineering, 2020, 27(6):23-29.

[7]孟毅, 门正兴,周杰,等. 锻件切边变形机理及变形规律研究[J]. 热加工工艺,2008,37(23):13-17.

Meng Y, Men Z X, Zhou J, et al. Research of die forging trimming transformation [J]. Hot Working Technology, 2008, 37(23):13-17.

[8]周杰, 孟毅,门正兴. 基于有限元模拟的20Cr模锻件切边变形机理及变形规律研究[J]. 系统仿真学报,2008,20(19):5245-5249.

Zhou J, Meng Y, Men Z X. Research of 20Cr die forging trimming based on FEM simulation [J]. Journal of System Simulation, 2008, 20(19): 5245-5249.

[9]王培安, 吴淑芳,郭欢欢,等. 基于DEFORM-3D的衬套挤压与冲孔成形参数分析[J]. 模具工业,2018,44(4):1-8.

Wang P A, Wu S F, Guo H H, et al. Process parametric analysis of extrusion and punching for chuck bushing based on DEFORM-3D software [J]. Die & Mould Industry, 2018, 44(4): 1-8.

[10]Yang S S, Ling X, Du P. Elastic and plastic deformation behavior analysis in small punch test for mechanical properties evaluation [J]. Journal of Central South University, 2018, 25(4):747-753.

[11]刘向远, 郝南海. GCr15轴承钢韧性断裂阈值研究[J]. 机械制造与自动化,2013,42(6):15-17.

Liu X Y, Hao N H. Research on critical value of GCr15 ductile fracture [J]. Machine Building & Automation, 2013, 42(6): 15-17.

[12]杨婷, 熊自柳,孙力,等. 汽车用先进高强钢韧性断裂模型的研究与应用进展[J]. 锻压技术,2021,46(1):10-16,23.

Yang T,Xiong Z L,Sun L,et al. Research and application progress on ductile fracture model of advanced high-strength steel (AHSS) for automotive [J]. Forging & Stamping Technology,2021,46(1):10-16,23.

[13]黄建科, 董湘怀. 金属韧性断裂准则的数值模拟和试验研究[J]. 材料科学与工艺,2010,18(4):450-454.

Huang J K, Dong X H. Numerical simulation and experimental verification of ductile fracture criteria of metals [J]. Materials Science & Technology, 2010, 18(4): 450-454.
Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com