Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Formation and evolution of interface voids in laminated metal
Authors:  
Unit:  
KeyWords:  
ClassificationCode:TG331
year,vol(issue):pagenumber:2022,47(7):162-166
Abstract:

 In the process of composite deformation for dissimilar metals, due to the different in metal properties and the asynchronous plastic deformation, it is easy to produce the void defects at the interface area, and the formation and evolution of void defects have an extremely adverse effect on the bimetallic interfacial bonding. Therefore, the development and evolution laws of voids in the deformation process for stainless steel/carbon steel composite rib under different tension coefficients were simulated by the finite element simulation technology. The results show that in the four passes with three-roll “tangent” feature, the metal in the roll gap area is in free deformation, and the cladding metal warps at the initial stage of deformation. At this time, the core metal has a small width, and the voids and voids are gradually formed at the interface. Moreover, the micro-tension rolling promotes the voids to expand further in the second pass, and the micro-tension improves the uniformity of wall thickness for the cladding metal. In the third and fourth passes of finishing, the voids gradually shrink and disappear, and the rolling process is successfully completed. The micro-morphologies of composite interface show that with the increasing of rolling temperature, the interface oxides are gradually decomposed, and the voids in the interface layer disappear. When the rolling temperature reaches 1200 ℃, the interface depth difference is only 3 μm, and the composite effect is better. 

Funds:
国家自然科学基金资助项目(52075357);山西省重点研发计划(201903D121043);轧制技术及连轧自动化国家重点实验室(东北大学)开放课题(2020RALKFKT013);山西省研究生教育改革研究课题(2020YJJG241);山西省研究生教育创新项目(2021Y709)
AuthorIntro:
作者简介:刘鑫(1995-),男,硕士研究生 E-mail:1176743646@qq.com 通信作者:帅美荣(1978-),女,博士,教授 E-mail:ruoxin2001@163.com
Reference:

 [1]张婷, 许浩, 李仲杰, 等. 层状金属复合材料的发展历程及现状[J]. 工程科学学报, 2021,43(1):67-75.


Zhang T, Xu H, Li Z J, et al. Development and present situation of laminated metal composites[J]. Chinese Journal of Engineering, 2021, 43(1):67-75.

[2]吴伟, 蔡庆伍, 余伟, 等. 耐腐蚀复合钢筋的生产工艺和技术[J]. 轧钢, 2015,32(Z1):135-138.

Wu W, Cai Q W, Yu W, et al. Production processes and technologies of corrosion resisitant composite bar[J]. Steel Rolling, 2015, 32(Z1):135-138.

[3]刘宝玺,林曾孟,殷福星.多级结构的金属材料强韧化机理研究进展[J]. 精密成形工程, 2021, 13(3): 49-61.

Liu B X, Lin Z M, Yin F X. Research on the strengthening and toughening mechanism of metallic materials with multiscale hierarchical structure[J]. Journal of Netshape Forming Engineering, 2021, 13(3): 49-61.

[4]Xie X, Yin S, Raoelison R, et al. Al matrix composites fabricated by solid-state cold spray deposition: A critical review[J]. Journal of Materials Science & Technology, 2021, 86:20-55.

[5]班慧勇, 梅镱潇, 石永久. 不锈钢复合钢材钢结构研究进展[J]. 工程力学, 2021,38(6):1-23.

Ban H Y, Mei Y X, Shi Y J, Research advances of stainless-clad bimetallic steel structures[J]. Engineering Mechanics, 2021, 38(6):1-23.

[6]Dhib Z, Guermazi N, Monique Gaspérini, et al. Cladding of low-carbon steel to austenitic stainless steel by hot-roll bonding: Microstructure and mechanical properties before and after welding[J]. Materials Science and Engineering: A, 2016, 656:130-141.

[7]余伟, 蔡庆伍, 吴伟, 等. 耐海水腐蚀不锈钢/碳钢复合带肋钢筋轧制技术[A]. 第十一届中国钢铁年会[C]. 北京: 2017.


Yu W, Cai Q W, Wu W, et al. Rolling technology for stainless steel/carbon steel composite rebar with seawater corrosion resistance[A]. Proceedings of the 11th CSM Steel Congress[C]. Beijing:2017.

[8]高亚男. 不锈钢/碳钢覆层钢筋轧制理论及实验研究[D]. 秦皇岛:燕山大学, 2011.

Gao Y N. Rolling Theory and Experimental Research of Stainless Steel/Carbon Steel Cladding Bar[D]. Qinhuangdao: Yanshan University, 2011.

[9]余伟, 张泽宇, 吴伟, 等. 不锈钢/碳钢耐蚀海水带肋钢筋轧制复合工艺[J]. 钢铁研究学报, 2019,31(4):380-386.

Yu W, Zhang Z Y, Wu W, et al. Rolling bonding process of stainless steel/carbon steel rebar with seawater corrosion resistance[J]. Journal of Iron and Steel Research, 2019, 31(4):380-386.

[10]张少坤. 不锈钢包覆铁屑复合轧制实验及有限元模拟[D]. 秦皇岛:燕山大学, 2014.

Zhang S K. The Composite Rolling Experiment and Finite Element Simulation of the Iron Scrap with Stainless Steel Coating[D]. Qinhuangdao: Yanshan University, 2014.

[11]Dyja H, Mróz S, Stradomski Z. Properties of joint in the bimetallic rods Cu-Al and Cu-steel after explosive cladding and the process of rolling[J]. Metalurgija, 2003, 42(3):185-191.

[12]Xie B, Sun M, Xu B, et al. Evolution of interfacial characteristics and mechanical properties for 316LN stainless steel joints manufactured by hot-compression bonding[J]. Journal of Materials Processing Technology, 2020,283:1-14.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com