Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Influence law of rigid die and flexible medium deep drawing process on forming limit and wall thickness distribution for GLARE laminate cylindrical parts
Authors: Men Xiangnan  Yan Dongdong  Lang Lihui  Zhang Chiye  Guo Qinglei  Li Lei 
Unit: Chengdu Aircraft Industrial (Group) Co.  Ltd.  Beihang University  Beijing Institute of Spacecraft Environment Engineering   Unit 93175  People′s Liberation Army 
KeyWords: GLARE laminate  forming limit  wall thickness distribution  fracture mode  flexible medium deep drawing 
ClassificationCode:TB333
year,vol(issue):pagenumber:2022,47(8):53-59
Abstract:

  The influence laws of rigid die and flexible medium deep drawing process on wall thickness distribution, forming limit and fracture mode for uncured GLARE laminate of cylindrical part with fiber layout modes along 0° and 45°  directions were studied. The results show that compared with the rigid die deep drawing process, the minimum wall thickness of the uncured GLARE laminate of cylindrical part is increased by 0.01 mm, the wall thickness distribution is more uniform, and the forming limit depth of the GLARE laminate of cylindrical part with 0° direction fiber layout is 15.2% higher than that with 45° direction fiber layout in the flexible medium deep drawing process. In addition, the fiber layout direction also affects the fracture mode of GLARE laminate cylindrical part, and the fracture position of cylindrical part is consistent with the fiber layout direction. Therefore, the deeper GLARE laminate cylindrical part can be prepared by the flexible medium deep drawing process, and at the same time, the fiber layout mode can be optimized by combining optimized fiber layout mode for components with different structures to improve the wall thickness consistency of component and avoid the fracture defects in the forming process.

Funds:
四川省科技计划项目(2019YFSY0034)
AuthorIntro:
作者简介:门向南(1983-),男,硕士,高级工程师,E-mail:mxn19830726@163.com
Reference:

 [1]曹增强. 纤维金属层板及其在飞机结构中的应用[J]. 航空制造技术,2006(6): 60-62.


Cao Z Q. Fiber metal laminates and its application in aircraft structure[J]. Aeronautical Manufacturing Technology 2006(6): 60-62.


[2]Vlot A, Gunnink J W. Fibre Metal Laminates:An Introduction[M]. LondonKluwer Academic Publishers2001.


[3]Sinmazelik T, Avcu E, Bora M , et al. A review: Fibre metal laminates, background, bonding types and applied test methods[J]. Materials & Design2011, 32(7): 3671-3685.


[4]Park S Y,Choi W J, Choi H S, et al. A comparative study on the properties of GLARE laminates cured by autoclave and autoclave consolidation followed by oven postcuring[J]. The International Journal of Advanced Manufacturing Technology,2010, 49, 605-613.


[5]Huang Y, Liu J Z, Huang X, et al. Delamination and fatigue crack growth behavior in fiber metal laminates (glare) under single overloads[J]. International Journal of Fatigue, 2015, 7853-60.


[6]陶杰,李华冠,潘蕾,等. 纤维金属层板的研究与发展趋势[J]. 南京航空航天大学学报,2015, 47(5): 626-636.


Tao J, Li H G, Pan L, et al. Review on research and development of fiber metal laminates[J]. Journal of Nanjing University of Aeronautics & Astronautics2015, 47(5): 626-636.


[7]Palkowski H, Stanic V, Carradò A. Multilayer roll-bonded sandwich: Processing, mechanical performance, and bioactive behavior[J]. The Journal of The Minerals, Metals & Materials Society2012, 64(4): 514-519.


[8]Sinke J. Manufacturing of GLARE parts and structures[J]. Applied Composite Materials2003, 10(4-5): 293-305.


[9]Edwardson S P, Dearden G, Watkins Ket al. Laser forming of bre metal laminates[J]. Lasers in Engineering2005 153: 233-255.


[10]Russig C, Bambach M, Hirt G, et al. Shot peen forming of fiber metal laminates on the example of GLARE[J]. International Journal of Material Forming 2014, 7(4): 425-438.


[11]Mylonas G I, Labeas G. Numerical modelling of shot peening process and corresponding products: Residual stress, surface roughness and cold work prediction[J]. Surface & Coatings Technology 2011, 205(19): 4480-4494.


[12]Mosse L, Compston P, Cantwell W J, et al. The effect of process temperature on the formability of polypropylene based fibre-metal laminates[J]. Composites Part A: Applied Science and Manufacturing 2005, 36(8): 1158-1166.


[13]Mosse L, Compston P, Cantwell W J, et al. Stamp forming of polypropylene based fibre-metal laminates: The effect of process variables on formability[J]. Journal of Materials Processing Technology 2006, 172(2): 163-168.


[14]Gresham J, Cantwell W, Cardew-Hall M J, et al. Drawing behaviour of metal-composite sandwich structures[J]. Composite Structures2006, 75(1-4): 305-312.


[15]Rajabi A M, Kadkhodayan M, Ghanei S. An investigation into the flexural and drawing behaviors of GFRP-based fiber-metal laminate[J]. Mechanics of Advanced Materials & Structures 2017, 10(25): 805-812.


[16]Liu S C, Lang L H, Sherkatghanad E, et al. Investigation into the fiber orientation effect on the formability of GLARE materials in the stamp forming process[J]. Applied Composite Materials, 2018, 25(2): 255-267.


[17]Wollmann T, Hahn M, Wiedemann S, et al. Thermoplastic fibre metal laminates: Stiffness properties and forming behaviour by means of deep drawing[J]. Archives of Civil and Mechanical Engineering, 2018, 18(2): 442-450.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com