Home
Editorial Committee
Brief Instruction
Back Issues
Instruction to Authors
Submission on line
Contact Us
Chinese

  The journal resolutely  resists all academic misconduct, once found, the paper will be withdrawn immediately.

Title:Numerical simulation and process test on superplastic forming/diffusion bonding for Ti-55 titanium alloy double-layer plate
Authors: Zhou Linghua Shen Zhongwei Xu Tao 
Unit: Huzhou Machine Tool Works Co.  Ltd. 
KeyWords: titanium alloy superplastic forming/diffusion bonding process test metallographic structure inflatable forming 
ClassificationCode:TG306
year,vol(issue):pagenumber:2022,47(8):76-82
Abstract:

 Superplastic forming/diffusion bonding technology utilizes the characteristics of high elongation and low deformation resistance for titanium alloy under low strain rate and suitable temperature environment, and simultaneously completes inflatable forming and diffusion welding under one-time heating condition to manufacture hollow parts with interlayer. Therefore, for the typical hollow components of titanium alloy double-layer plate, its forming process plan was formulated and the forming process of the plate in the superplastic state was simulated by the finite element analysis method, then the inflatable forming process in the die cavity was observed. Secondly, by analyzing the wall thickness distribution condition of the formed components, the gas pressure-time curve was adjusted and determined to guide the process test. Finally, the process test and quality analysis of the components were carried out, and the metallographic structure of the diffusion bonding under different pressure modes as well as the wall thickness data during the inflatable forming at the same sampling point as the numerical simulation were obtained to verify the deviation between the numerical simulation and the actual forming results.

Funds:
浙江省重点研发计划(2020C01093)
AuthorIntro:
作者简介:周凌华(1987-),男,硕士,高级工程师,E-mail:zhoulh@hzjcc.com;通信作者:沈中伟(1973-),男,本科,工程师,E-mail:shenzw@hzjcc.com
Reference:

 [1]胡丹. 飞机钛合金钣金件橡皮囊精确成形技术研究[D].南京: 南京航空航天大学, 2014.


Hu D. Precision Forming Technology Research on Rubber Bladder Forming of Aircraft Titanium Alloy Sheet Metal[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014.


[2]赵林博, 徐珊珊. 钛合金超塑成形工艺及应用[J]. 科技创新导报,2011(19): 59-69.


Zhao L B, Xu S S. Superplastic forming process and application of titanium alloy[J]. Science and Technology Innovation Herald2011, (19): 59-69.


[3]洪慎章. 超塑性成形技术的应用[J]. 机械制造,1982(1): 36-38.


Hong S Z. Application of superplastic forming technology[J]. Machinery 1982, (1): 36-38.


[4]李细锋, 朱富慧,陈长江,等. 置氢钛合金超塑成形/扩散连接技术研究进展[J]. 航空制造技术, 2019, 62(16): 38-45.


Li X F, Zhu F H, Chen C J, et al. Research progress of superplastic forming/diffusion bonding of hydrogenated titanium alloy[J]. Aeronautical Manufacturing Technology 2019, 62(16): 38-45.


[5]Safiullin R V, Vasin R A, Enikeev F U. Determination of the parameters of superplastic forming for long rectangular thin sheet titanium alloy TI-6A1-4V[J]. Acta Metallurgica SinicaEnglish Letters2000, 13(2): 567-573.


[6]张宇翔, 汤泽军,许爱军,等. Ti55钛合金管电辅助加热气压胀形圆角填充成形规律及多场耦合数值模拟[J]. 锻压技术,2021, 46(4): 112-120.


Zhang Y X, Tang Z J, Xu A J, et al. Fillet filling law and multi-field coupling numerical simulation of Ti55 titanium alloy pipe in electric assisted heating bulging[J]. Forging & Stamping Technology, 2021, 46(4): 112-120.


[7]李志强, 陆文林,王伟亮,等. 5A06薄壁壳体超塑胀形过程壁厚分布规律及其控制[J]. 塑性工程学报,2017, 24(1): 108-113.


Li Z Q, Lu W L, Wang W L, et al. Wall thickness distribution and its control of 5A06 thin-walled shell superplastic bulging[J]. Journal of Plasticity Engineering,2017, 24(1): 108-113.


[8]蒋少松.  TC4钛合金超塑成形精度控制[D]. 哈尔滨: 哈尔滨工业大学, 2009.


Jiang S S. Accuracy Control of Superplastic Forming for TC4 Titanium Alloy[D]. Harbin: Harbin Institute of Technology, 2009.


[9]王国峰, 张建威,张晓巍,等. 2B06铝合金双层结构件DB&SPF组合工艺研究[J]. 锻压技术,2020, 45(7): 187-191.


Wang G F, Zhang J W, Zhang X W, et al. esearch on DBSPF combination process of double-layer structural parts for 2B06 aluminum alloy[J]. Forging & Stamping Technology, 2020, 45(7): 187-191.


[10]付明杰, 曾元松,钱健行,等.Ti-22Al-25Nb合金扩散连接工艺及连接机制研究[J].稀有金属,2020,44(12):1233-1239.


Fu M JZeng Y SQian J Het al. Diffusion bonding process and mechanism of Ti-22Al-25Nb alloy[J]. Chinese Journal of Rare Metals 2020,44(12):1233-1239.


[11]付明杰, 李继忠, 曾元松. 搅拌摩擦焊Ti-4.5Al-3V-2Fe-2Mo合金的超塑性变形行为研究[J].稀有金属,2020,44(1):1-8.


Fu M J, Li J Z, Zeng Y S. Superplastic deformation behavior of friction stir welded Ti-4.5Al-3V-2Fe-2Mo alloy[J]. Chinese Journal of Rare Metals2020,44(1):1-8.


[12]闫亮亮. Ti-55双层板超塑成形/扩散连接试验研究[D]. 南京: 南京航空航天大学, 2015.


Yan L L. Experiment Study on Process of Superplastic Forming/Diffusion Bonding for Double-sheet Structure of Ti-55 Titanium Alloy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.


[13]成大先.机械设计手册[M].北京:化学工业出版社,2007.


Cheng D X. Handbook of Mechanical Design[M]. Beijing:Chemical Industry Press,2007.

Service:
This site has not yet opened Download Service】【Add Favorite
Copyright Forging & Stamping Technology.All rights reserved
 Sponsored by: Beijing Research Institute of Mechanical and Electrical Technology; Society for Technology of Plasticity, CMES
Tel: +86-010-62920652 +86-010-82415085     Fax:+86-010-62920652
Address: No.18 Xueqing Road, Beijing 100083, P. R. China
 E-mail: fst@263.net    dyjsgg@163.com